Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT\(\Delta OAB\)VÀ\(\Delta ODC\)
AO=OD
BO=OC =>\(\Delta OAB=\Delta ODC\left(c-g-c\right)\)
^AOB=^COD
=>^B=^BCD
TA LẠI CÓ ^B + ^ACB=\(90^0\)
=>^BCD + ^ACB=\(90^0\)
XÉT \(\Delta ACP\)VÀ\(\Delta CAB\)
^BAC=^ACD=\(90^0\)
AB=CD =>\(\Delta ACP=\Delta CAB\)(2 CẠNH GÓC VUÔNG)
AC chung
=>BC=AP
vì \(AO=OD=\frac{AD}{2}\)nên \(AO=\frac{BC}{2}\) hay BC=2AO
mk sẽ tích và add cho bạn nào làm đúng và nhanh nhất trong hôm nay thôi nha vì mk đang cần gấp cho ngày mai.
Ta có :O là trung điểm của BC(gt)
O là trung điểm của AK(OA=OK)
=>ABKC là hình bình hành(dhnb)
Mà góc BAC = 90 độ
=>ABKC là hình chữ nhật (dhnb)
=>AB=CK và góc ACK = 90 độ
Xét tam giác ABC và tam giác CKA có:
AB=CK(cmt)
góc BAC=góc KCA( cùng bằng 90 độ)
AC chung
Vậy tam giác ABC = tam giác CKA(c.g.c)
b)Xét tam giác AHB và tam giác CHA có
góc AHB = góc CHA (=90 độ)
góc BAH =góc ACH(cùng phụ với góc B)
Vậy tam giác AHB đồng dạng tam giác CHA(g.g)
=>\(\dfrac{AB}{AH}=\dfrac{AC}{CH}\)(1)
Ta có AH\(\perp\)CH
ED\(\perp\)CH
=>AH//DE
Xét tam giác ACH có
AH//DE
=>\(\dfrac{AE}{HD}=\dfrac{AC}{CH}\)
=>\(\dfrac{AE}{AH}=\dfrac{AC}{CH}\)(do AH=AD)(2)
Từ(1) và (2) => \(\dfrac{AB}{AH}=\dfrac{AE}{AH}\)
=>AB=AE(đpcm)
a: Xét tứ giác ABMC có
O là trung điêm chung của AM và BC
góc BAC=90 độ
=>ABMC là hình chữ nhật
=>AB=MC và MC//AB
b: ΔACB vuông tại A
mà AO là trung tuyến
nên OA=OB=OC
c: Xet ΔABC vuông tại A có AH là đường cao
nên 1/AH^2=1/AB^2+1/AC^2
a: Xét ΔOAC và ΔODB có
OA=OD
\(\widehat{AOC}=\widehat{DOB}\)
OC=OB
Do đó: ΔOAC=ΔODB
b: Xét tứ giác ABDC có
O là trung điểm của BC
O là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
a) Xét tg ABC và tg MBN có:
+ BA = BM (gt)
+ BC = BN (gt)
+ ^ABC = ^MBN ( 2 góc đối đỉnh)
Suy ra: tam giác ABC = tam giác MBN (c g c).
b) Xét tg NBC có: BN = BC (gt)
Suy ra: tg NBC cân tai B
Lại có: BO là đường trung tuyến ( do O là TĐ của NC)
Suy ra: BO cũng là đường cao (TC các đường trong tg cân)
Suy ra: BO vuông NC (đpcm)
c) Ta có: ^MNB + ^BNO = ^MNO
^ACB + ^BCO = ^ACO
Mà: ^MNB = ^ACB (do tg ABC = tg MBN)
^BNO = ^BCO (do tg NBC cân tại B)
Suy ra: ^MNO = ^ACO
Xét tg MNO và tg ACO:
+ ^MNO = ^ACO (cmt)
+ ON = OC (do O là Trung điểm của NC)
+ MN = AC (do tg ABC = tg MBN)
Suy ra: tg MNO = tg ACO (c g c)
Suy ra: OA = OM (2 cạnh tương ứng)