Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ABE và tam giác HBE có:
góc ABE = góc HBE ( BE là tia phân giác góc B )
cạnh BE chung
góc A = góc H ( = 90 độ )
b) vì BE là tia phân giác của góc B
=> góc ABE = góc HBE = 60 độ/2 = 30 độ
vì góc HBE và góc CHE là 2 góc đồng vị ( HK // BE )
=> góc EBH = góc CHK = 30 độ
xét tam giác HBE có:
góc EBH + góc BHE + góc BEH = 180 độ (định lí tổng 3 góc trong 1 tam giác)
=> góc BEH = 180 độ - ( góc EBH + góc BHE )
= 180 độ - ( 30 độ + 90 độ )
= 60 độ
vì góc BEH và góc EHK là 2 góc so le trong
=> góc BEH = góc EHK = 60 độ
vì tam giác ABE = tam giác HBE ( theo cm ý a )
=> góc BEH = góc BEA = 60 độ
vì góc AEK là góc bẹt ( = 180 độ )
=> góc HEK = 180 độ - góc BAE - góc BEH
= 180 độ - 60 độ - 60 độ
= 60 độ
vì tam giác EHK có góc EHK = góc HEK
=> tam giác EHK là tam giác cân mà góc HEK = 60 độ
=> tam giác EHK là tam giác đều
mik ko bít vẽ hink :(
Xét tam giác \(ABE\)và tam giác \(HBE\)có:
\(\widehat{HBE}=\widehat{ABE}\)(vì \(BE\)là phân giác góc \(ABC\))
\(BE\)cạnh chung
\(\widehat{BAE}=\widehat{BHE}=90^o\)
Suy ra \(\Delta HBE=\Delta ABE\)(cạnh huyền - góc nhọn)
a, dễ tự làm
b, xét tam giác CAB và tam giác DAB có : AB chung
AC = AD (gt)
góc CAB = góc DAB = 90
=> tam giác CAB = tam giác DAB (2cgv)
=> góc CBA = góc DBA (đn)
xét tam giác AFB và tam giác AEB có : AB chung
góc AFB = góc AEB = 90
=> tam giác AFB = tam giác AEB (ch - gn)
a, xét 2 t.giác vuông ABE và HBE có:
BE chung
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
=>t.giác ABE =t.giác HBE(CH-GN)
b, xem lại đề bài