Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có CN/CA=CP/CB
nên NP//AB và NP=AB/2
=>NP//AM và NP=AM
=>AMPN là hình bình hành
mà góc MAN=90 độ
nên AMPN là hình chữ nhật
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=108/15=7,2(cm)
a) Xét tam giác AHN và tam giác ACH có :
Góc AHC chung
Góc ANH = Góc AHC ( = 90oC)
⇒ Tam giác AHN ~ tam giác ACH ( TH3)
b) Áp dụng định lý Py-ta-go vào tam giác ABH có :
BH2 = AB2 - AH2
BH = \(\sqrt{AB^2-AH^2}\)
BH = 9 ( BH > 0)
Tương tự , ta có : HC = 5 ( cm)
⇒ BC = BH + HC = 9 + 5 = 14 ( cm)
c) Ta có : tam giác AHN ~ Tam giác ACH ( TH3 )( Câu a)
⇒ \(\dfrac{AH}{AC}=\dfrac{AN}{AH}\)
⇒ AH2 = AN.AC ( 1)
Cmtt câu a) Tam giác AMH ~ Tam giác AHB
⇒ \(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)
⇒ AH2 = AM.AB ( 2)
Từ ( 1 ; 2) ⇒ AN.AC = AM.AB
⇒ \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)
Xét tam giác AMN và tam giác ACB có :
Góc BAC chung
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\) ( cmt)
⇒ Tam giác AMN ~ Tam giác ACB ( TH2 )
d) Theo CM câu c) Ta có : \(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)
⇒ AM = \(\dfrac{AH^2}{AB}=\dfrac{48}{5}=9,6\left(cm\right)\)
Theo câu c) Lại có : Tam giác AMN ~ Tam giác ACB ( TH2)
⇒ \(\dfrac{AM}{AC}=\dfrac{MN}{BC}\)
⇒ MN = \(\dfrac{AM.BC}{AC}=\dfrac{9,6.14}{13}=10,34\left(cm\right)\)
a) xét tam giac ahn và tam giác ach có
góc ahc = góc anh=90 độ
góc a chung
suy ra ta có tam giac ahn đồng dạng với tam giác ach(g.g)
Lời giải:
a)
Vì $M, N$ lần lượt là trung điểm của $AB,AC$ nên:
\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{2}\)
Xét tam giác $AMN$ và $ABC$ có:
\(\left\{\begin{matrix} \text{chung góc A}\\ \frac{AM}{AB}=\frac{AN}{AC}\end{matrix}\right.\Rightarrow \triangle AMN\sim \triangle ABC\) (c.g.c)
b)
Áp dụng định lý Pitago cho tam giác vuông $ABC$:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\) (cm)
Ta có:
\(\frac{AB.AC}{2}=S_{ABC}=\frac{AH.BC}{2}\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\) (cm)
c)
Vì \(NP\parallel AB\) nên áp dụng định lý Ta-lét ta có:
\(\frac{NP}{AB}=\frac{CN}{CA}=\frac{1}{2}\Rightarrow NP=\frac{AB}{2}; NC=\frac{AC}{2}\)
Mặt khác, \(NP\parallel AB, AB\perp AC\Rightarrow NP\perp AC\)
Do đó:
\(S_{NPC}=\frac{NP.NC}{2}=\frac{\frac{AB}{2}.\frac{AC}{2}}{2}=\frac{AB.AC}{8}\)
\(S_{ABC}=\frac{AB.AC}{2}\)
\(\Rightarrow \frac{S_{NPC}}{S_{ABC}}=\frac{AB.AC}{8}: \frac{AB.AC}{2}=\frac{1}{4}\)