K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

a)

Vì $M, N$ lần lượt là trung điểm của $AB,AC$ nên:

\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{2}\)

Xét tam giác $AMN$ và $ABC$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \frac{AM}{AB}=\frac{AN}{AC}\end{matrix}\right.\Rightarrow \triangle AMN\sim \triangle ABC\) (c.g.c)

b)

Áp dụng định lý Pitago cho tam giác vuông $ABC$:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\) (cm)

Ta có:

\(\frac{AB.AC}{2}=S_{ABC}=\frac{AH.BC}{2}\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\) (cm)

c)

Vì \(NP\parallel AB\) nên áp dụng định lý Ta-lét ta có:

\(\frac{NP}{AB}=\frac{CN}{CA}=\frac{1}{2}\Rightarrow NP=\frac{AB}{2}; NC=\frac{AC}{2}\)

Mặt khác, \(NP\parallel AB, AB\perp AC\Rightarrow NP\perp AC\)

Do đó:

\(S_{NPC}=\frac{NP.NC}{2}=\frac{\frac{AB}{2}.\frac{AC}{2}}{2}=\frac{AB.AC}{8}\)

\(S_{ABC}=\frac{AB.AC}{2}\)

\(\Rightarrow \frac{S_{NPC}}{S_{ABC}}=\frac{AB.AC}{8}: \frac{AB.AC}{2}=\frac{1}{4}\)

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

15 tháng 12 2022

a: Xét ΔCAB có CN/CA=CP/CB

nên NP//AB và NP=AB/2

=>NP//AM và NP=AM

=>AMPN là hình bình hành

mà góc MAN=90 độ

nên AMPN là hình chữ nhật

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=108/15=7,2(cm)

29 tháng 7 2021

 gffffgfyh

22 tháng 5 2018

A B C H M N a) Xét tam giác AHN và tam giác ACH có :

Góc AHC chung

Góc ANH = Góc AHC ( = 90oC)

⇒ Tam giác AHN ~ tam giác ACH ( TH3)

b) Áp dụng định lý Py-ta-go vào tam giác ABH có :

BH2 = AB2 - AH2

BH = \(\sqrt{AB^2-AH^2}\)

BH = 9 ( BH > 0)

Tương tự , ta có : HC = 5 ( cm)

⇒ BC = BH + HC = 9 + 5 = 14 ( cm)

c) Ta có : tam giác AHN ~ Tam giác ACH ( TH3 )( Câu a)

\(\dfrac{AH}{AC}=\dfrac{AN}{AH}\)

⇒ AH2 = AN.AC ( 1)

Cmtt câu a) Tam giác AMH ~ Tam giác AHB

\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)

⇒ AH2 = AM.AB ( 2)

Từ ( 1 ; 2) ⇒ AN.AC = AM.AB

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)

Xét tam giác AMN và tam giác ACB có :

Góc BAC chung

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\) ( cmt)

⇒ Tam giác AMN ~ Tam giác ACB ( TH2 )

d) Theo CM câu c) Ta có : \(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)

⇒ AM = \(\dfrac{AH^2}{AB}=\dfrac{48}{5}=9,6\left(cm\right)\)

Theo câu c) Lại có : Tam giác AMN ~ Tam giác ACB ( TH2)

\(\dfrac{AM}{AC}=\dfrac{MN}{BC}\)

⇒ MN = \(\dfrac{AM.BC}{AC}=\dfrac{9,6.14}{13}=10,34\left(cm\right)\)

22 tháng 5 2018

a) xét tam giac ahn và tam giác ach có

góc ahc = góc anh=90 độ

góc a chung

suy ra ta có tam giac ahn đồng dạng với tam giác ach(g.g)

12 tháng 5

trùng đề tui nè