K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

Sửa đề: ΔABC cân tại A

a: Sửa đề: AB là trung bình nhân của AE và AH

CF//BH

CF\(\perp\)AB

Do đó: BA\(\perp\)BH

=>ΔBAH vuông tại B

Xét ΔBAH vuông tại B có BE là đường cao

nên \(AE\cdot AH=AB^2\)

=>\(AB=\sqrt{AE\cdot AH}\)

=>AB là trung bình nhân của AE và AH

b: Từ C, kẻ CG\(\perp\)CB, \(G\in AB\)

ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

Xét ΔBCG có

D là trung điểm của BC

DA//CG

Do đó: A là trung điểm của BG

Xét ΔBCG có D,A lần lượt là trung điểm của BC,BG

=>DA là đường trung bình

=>CG=2DA

=>4DA^2=CG^2

Xét ΔCBG vuông tại C có CF là đường cao

nên \(\dfrac{1}{CF^2}=\dfrac{1}{CG^2}+\dfrac{1}{CB^2}\)

=>\(\dfrac{1}{CF^2}=\dfrac{1}{4DA^2}+\dfrac{1}{CB^2}\)

31 tháng 7 2020

kẻ đường cao AH ta có \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

AD và AE là hai tia phân giác cả hai góc kề bù => AD _|_ AE

AH là đường cao của tam giác vuông ADE ta có

\(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)

vậy \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)

17 tháng 7 2016

Kẻ DM, DN vuông góc với AB, AC. 

Ta có: DNAB=CDBD⇒1AB=CDDN.BC;MDAC=BDBC⇒1AC=BDMD.BC⇒1AB+1AC=CD+BDDN.BC=1DNDNAB=CDBD⇒1AB=CDDN.BC;MDAC=BDBC⇒1AC=BDMD.BC⇒1AB+1AC=CD+BDDN.BC=1DN 

Do AMDN là hình vuông nên: AD=√2DMAD=2DM =>ĐPCM

Câu b thì cm tương tự, mình để bạn tự giải ! 

21 tháng 2 2017

giải rõ hơn đc ko bạn

NV
13 tháng 12 2021

Kẻ PD và BE vuông góc AC

Định lý phân giác: \(\dfrac{AN}{NC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AN}{AN+NC}=\dfrac{AB}{AB+BC}\Rightarrow\dfrac{AN}{AC}=\dfrac{AB}{AB+BC}=\dfrac{c}{a+c}\)

Tương tự: \(\dfrac{AP}{AB}=\dfrac{b}{a+b}\)

Talet: \(\dfrac{PD}{BE}=\dfrac{AP}{AB}\)

\(\dfrac{S_{APN}}{S_{ABC}}=\dfrac{\dfrac{1}{2}PD.AN}{\dfrac{1}{2}BE.AC}=\dfrac{AP}{AB}.\dfrac{AN}{AC}=\dfrac{bc}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\dfrac{S_{BPM}}{S_{ABC}}=\dfrac{ac}{\left(a+b\right)\left(b+c\right)}\) ; \(\dfrac{S_{CMN}}{S_{ABC}}=\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\dfrac{S_{APN}+S_{BPM}+S_{CMN}}{S_{ABC}}=\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{S_{ABC}-\left(S_{APN}+S_{BPM}+S_{CMN}\right)}{S_{ABC}}=1-\left(\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\right)\)

\(=\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

2. Do ABC cân tại C \(\Rightarrow AC=BC=a\)

\(\dfrac{BC}{AB}=k\Rightarrow AB=\dfrac{BC}{k}=\dfrac{a}{k}\)

Do đó:

\(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2.a.a.\dfrac{a}{k}}{2a.\left(a+\dfrac{a}{k}\right)\left(a+\dfrac{a}{k}\right)}=\dfrac{k}{\left(k+1\right)^2}\)

NV
13 tháng 12 2021

undefined