Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\)&\(\Delta EBD\)có:
BE = AB ( theo đầu bài)
\(\widehat{ABD}=\widehat{EBD}\)(vì BD là phân giác của góc ABC)
BD chung
=> \(\Delta ABD=\Delta EBD\)(c.g.c)
=> DA= DE ( 2 cạnh tương ứng )
Ta có: \(\widehat{BDA}+\widehat{BDA}=90^o\)(trong tam giác vuong 2 góc nhọn phụ nhau)
=>\(\widehat{BDA}< \widehat{BAD}\)(1)
Và có : \(\widehat{BDC}>\widehat{BAD}\)(tính chất góc ngoài của tam giác)(2)
Từ (1) vs (2) =>\(\widehat{BDC}>\widehat{BDA}\)
Mà:\(\widehat{BDA}=\widehat{BDE}\)
=>\(\widehat{BDC}>\widehat{BDE}\)
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=90 độ và DA=DE
c: DA=DE
DE<DC
=>DA<DC
a: AB=8cm
b: xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
BA=BD
Do đó: ΔABE=ΔDBE
b: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
c: Ta có: ΔBDC cân tại B
mà BF là đường phân giác
nên F là trung điểm của CD và BF\(\perp\)CD
a) Xét ∆ADE và ∆ADB ta có:
AE = AB (gt)
(AD là tia phân giác của )
AD (cạnh chung)
Do đó ∆ADE = ∆ADB (c.g.c)
Mà là góc ngoài của tam giác ADE
Nên
b) Ta có là góc ngoài của tam giác ACD)
Mà (câu a)
∆CDE có DC > ED (định lí cạnh đối diện với góc lớn hơn)
Mà ED = BD (∆ADE = ∆ADB). Do vậy DC>BD.