Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2
=> BC = 2.AM = 2.41 = 82
Tam giác ABC vuông tại A nên : S ABC = AB.AC/2
Lại có : AH là đường cao nên S ABC = AH.BC/2
=> AB.AC/2 = AH.BC/2
=> AB.AC = AH.BC = 40.82 = 3280
Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có :
AB^2+AC^2 = BC^2 = 82^2 = 6724
<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284
<=> AB+AC = \(18\sqrt{41}\)
(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164
<=> AC-AB = \(2\sqrt{41}\)( VÌ AC > AB )
=> AB = \(8\sqrt{41}\); AC = \(10\sqrt{41}\)
=> AB/AC = \(\frac{8\sqrt{41}}{10\sqrt{41}}\)= 4/5
Tk mk nha
\(\Delta AHM\)co:
\(AM^2=AH^2+HM^2\)(AP dung dinh ly Pytago)
\(\Rightarrow41^2=40^2+HM^2\)
\(\Rightarrow HM^2=41^2-40^2=81\)
\(\Rightarrow HM=\sqrt{81}=9\)
Ti so do dai 2 canh goc vuong la:
\(\frac{AH}{HM}=\frac{40}{9}\)
HTDT
\(\Delta ABC\)vuông tại A , trung tuyến AM=41 nên MB=MC=41 ta tính được HM=9,HB=32,HC=50 .Xét \(\Delta ABH\)và \(\Delta ACH\)vuông tại H , ta có :\(^{AB^2=40^2+32^2=2624^2;AC^2=40^2+50^2=4100\Rightarrow\frac{AB^2}{AC^2}=\frac{2624}{4100}=\frac{16}{25}\Rightarrow\frac{AB}{AC}=\frac{4}{5}}\)
Căng =))) Mà chỉ biết làm nếu có đường trung tuyến thôi âydaaa
Thôi để người khác làm nhé
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
*với ab>ac
vì trung tuyến bằng 1/2 cạnh huyền nên am=bm=cm=1/2 bc=41.=>bc=82.
Theo định lý pytago, mh^2=am^2-ah^2.
=>mh=9.
=>bh=32.
Theo định lý Pytago =>ab^2=ah^2+bh^2 =>ab=8\(\sqrt{41}\).
tương tự ta có ac=\(10\sqrt{41}\)
Xét \(\Delta ABC\perp A\)ta có:
AM là trung tuyến ứng cạnh huyền BC
=> AM=BM=CM=41
Xét \(\Delta AHM\perp H\)ta có:
\(HM^2=AM^2-AH^2\left(pytago\right)\)
\(\Rightarrow HM^2=41^2-40^2=81\)
\(\Rightarrow HM=\sqrt{81}=9\)
Ta có: \(\hept{\begin{cases}BH=BM-HM=41-9=32\\CH=CM+HM=41+9=50\end{cases}}\)
Xét \(\Delta ABH,\Delta ABC\)có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABH\approx\Delta ABC\left(gg\right)\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{BA}\Rightarrow BA^2=BH\cdot BC\)
Xét \(\Delta CHA,\Delta CAB\)có:
\(\widehat{CHA}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{C}:chung\)
\(\Rightarrow\Delta CHA\approx\Delta CAB\left(gg\right)\)
\(\Rightarrow\frac{AC}{CH}=\frac{BC}{AC}\Rightarrow AC^2=CH\cdot BC\)
Ta có:
\(\left(\frac{AB}{BC}\right)^2=\frac{BH\cdot BC}{HC\cdot BC}=\frac{BH}{HC}=\frac{32}{50}=\frac{16}{25}\)
Vậy \(\frac{AB}{BC}=\frac{16}{25}\)
:> hình dễ bn có thể tự vẽ:Đ vì mik ngại :>
Xét t/gABC_|_ A ta có:
AM là trung tuyến ứng vs cạnh huyền BC
=>AM=BM=CM=41
Lại xét t/gAHM_|_H theo định lý pi-ta-go ta có:
HM2=AM2-AH2
=>HM2=412-402=81
=>HM=\(\sqrt{81}\)=9
Ta có:
BH=BM-HM=41-9=32
CH=CM+HM=41+9=50
Xét t/gABH và t/gABC ta có:
^ABH=^ABC=90o
=>^B chung
=>t/gABH~t/gABC(g.g)
=>BA/BH=BC/BA=>BA2=BH.BC
Xét t/gCAB và t/g CHA ta có:
^CAB=^CHA=90o
=>^C chung
=>AC/AH=BC/AC=>AC2=HC.BC
=>(AB/AC)2=BH.BC/HC.BC=32/50=16/25
=> tỉ số hai cạnh góc AB/AC=16/25