Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBHI vuông tại H và ΔAKI vuông tại K có
góc BIH=góc AIK
=>ΔBHI đồng dạng vói ΔAKI
=>IB*IK=IA*IH
b: góc BHA=góc BKA=90 độ
=>BHKA nội tiếp
=>góc BAH=góc BKH
a) Xét ΔABC có
BE là đường cao ứng với cạnh AC(gt)
CF là đường cao ứng với cạnh AB(gt)
BE cắt CF tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: AH⊥BC
b) Xét tứ giác BHCK có
HC//BK(gt)
BH//CK(gt)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà M là trung điểm của BC(gt)
nên M là trung điểm của HK
hay H,M,K thẳng hàng(đpcm)
MN//AC
AB vuông góc AC
=>MN vuông góc AB
Xét ΔANB có
NM,AH là đường cao
NM cắt AH tại M
=>M là trực tâm
=>BM vuông góc AN
Xét tam giác ABN có 2 đường cao BK,AH cắt nhau tại M nên M là trực tâm Tam Giác ABN. ⇒NM ⊥ AB Tại I
Mà AC ⊥ AB nên MN // AC
Xét tam giác HAC Có M là trung điểm HA, MN // AC nên MN là đường trung bình của tam giác AHC Suy ra N Là trung điểm CH
( ĐPCM)