K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đườg cao

nên AE*AC=AH^2

=>AD*AB=AE*AC

=>AD/AC=AE/AB

Xét ΔABC vuông tại A có tan B=AC/AB=căn 3

=>góc B=60 độ

=>góc C=30 độ

BC=căn AB^2+AC^2=8(cm)

\(S_{ABC}=\dfrac{1}{2}\cdot4\cdot4\sqrt{3}=8\sqrt{3}\left(cm^2\right)\)

\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{4\cdot4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

góc DAE chung

=>ΔADE đồng dạng với ΔACB

=>S ADE/S ACB=(AD/AC)^2

\(=\left(\dfrac{AH^2}{AB}:AC\right)^2=\left(\dfrac{AH^2}{AB\cdot AC}\right)^2=\left(\dfrac{12}{4\cdot4\sqrt{3}}\right)^2=\dfrac{3}{16}\)

\(\left(1-cos^2B\right)\cdot sin^2C=sin^2B\cdot sin^2C\)

\(=\left(sinB\cdot sinC\right)^2=\left(\dfrac{AB}{BC}\cdot\dfrac{AC}{BC}\right)^2=\left(\dfrac{4}{8}\cdot\dfrac{4\sqrt{3}}{8}\right)^2=\dfrac{3}{16}\)

=>\(S_{ADE}=S_{ABC}\cdot\left(1-cos^2B\right)\cdot sin^2C\)

16 tháng 10 2020

A B C H D E

16 tháng 10 2020

a, Ta có : 

^C = 450 ( t/c tam giác vuông cân : mỗi góc nhọn đều bằng 450 ) (*)

Lại có : Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó 

Mà : ^BDH = 900 => ^HDA + ^BDH = ^DBA => ^HDA = ^DBA - ^BDH = 1800 - 900 = 900

Suy ra : ^ADE = ^HDE = ^HDA/2 = 900/2 = 450 (**)

tỪ (*); (**) TA CÓ ĐPCM 

a:

BC=35cm 

\(AH=\dfrac{AB\cdot AC}{BC}=16.8\left(cm\right)\)

b: \(AE=\dfrac{AH^2}{AC}=\dfrac{16.8^2}{28}=10.08\left(cm\right)\)

\(AD=\dfrac{AH^2}{AB}=\dfrac{16.8^2}{21}=13.44\left(cm\right)\)

Do đó: \(S_{AED}=\dfrac{AD\cdot AE}{2}=\dfrac{13.44\cdot10.08}{2}=67.7376\left(cm^2\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm