K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của MH
Suy ra: AM=AH
Xét ΔAMH có AM=AH
nên ΔAMH cân tại A
mà AB là đường trung trực ứng với cạnh đáy HM
nên AB là tia phân giác của \(\widehat{MAH}\)
b)
gọi gd của HN và AC là I
gọi gd AB và HM là K
Xét tg HAN có AN là dg trung trực của HN
=> AH=AN=> tg AHN cân tại A.
=> HAI = IAN
Vì AB là pg MAH(cmt)=> MAK =KAH
mà KAH+HAI=A=90 độ
=> MAK+IAN=90 độ
=> MAK+IAN+KAH +HAI=90+90=180 độ
=> A,M,N thẳng hàng (1)
Ta có: tg AMH cân tại A(cmt)=> AM=AH
Tg HAN cân tại A(cmt)=> AH=AN
=> AM=AN. (2)
=> A là td MN
c) xét tg MBH có BK vg góc với MH=> BK là dg cao
MK=KH=> BK là dg ttuyến
=> tg MBH cân tại B(tc tg cân)
=> MB=BH
Chứng minh tương tự cho tg HCN
=> tg HCN cân tại C(tc tg cân)
=> CH=CN
mà BH+HC=BC=> MB+CN=BC