K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

a) ΔABH vuông tại H, theo định lý Py-ta-go ta có:

AH2+BH2=AB2 (1)

ΔABC vuông tại A, đường cao AH, theo hệ thức lượng ta có:

=> AB2=BH.BC (2)

Từ (1) và (2) => BH.BC=AH2+BH2 ( = AB2)

4 tháng 9 2019

b) Xét ΔAHB vuông tại H, HE là đường cao

=> AH2=AE.AB (1)

Xét ΔAHC vuông tại H, HF là đường cao

=> AH2=AF.AC (2)

Từ (1) và (2) => AE.AB=AF.AC (AH2)

17 tháng 6 2021

a, xét \(\Delta ABC\) vuông tại A áp dụng hệ thức lượng\(=>AC^2=CH.BC=>HC=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6cm\)

\(=>HB=BC-HC=15-9,6=5,4cm\)

áp dụng Pytago trong \(\Delta AHC\) vuông tại H

\(=>HA=\sqrt{AC^2-HC^2}=\sqrt{12^2-9,6^2}=7,2cm\)

\(b,\) do E,F là hình  chiếu vuông góc của H lần lượt lên AB, AC

\(=>\left\{{}\begin{matrix}EH\perp AB\\HF\perp AC\end{matrix}\right.\) mà \(\Delta AHB\) và \(\Delta AHC\) lần lượt vuông góc tại H

theo hệ thức lượng

\(=>\left\{{}\begin{matrix}AH^2=AE.AB\\AH^2=AF.AC\end{matrix}\right.\)=>\(AE.AB=AF.AC\)

c, do E,F là hình  chiếu vuông góc của H lần lượt lên AB, AC

=> tứ giác EHFA là hình chữ nhật\(=>AE=HF< =>HF^2=AE^2\)

áp dụng pytago trong \(\Delta EHA\) vuông tại E

\(=>HE^2+AE^2=AH^2< =>HE^2+HF^2=AH^2\)(1)

theo hệ thức lượng trong tam giác ABC vuông tại A đường cao AH

\(=>AH^2=HB.HC\left(2\right)\)

(1)(2)=>\(HE^2+HF^2=HB.HC\)

23 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(BD\cdot BA=BH^2\)

\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(CE\cdot CA=CH^2\)

\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)

14 tháng 6 2021

A B C H 12 20 E

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=400-144=256\Leftrightarrow AC=16\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{144}+\frac{1}{256}=\frac{256+144}{144.256}\)

\(\Rightarrow400AH^2=36864\Leftrightarrow AH^2=\frac{36864}{400}=\frac{2304}{25}\Leftrightarrow AH=\frac{48}{5}\)cm 

14 tháng 6 2021

b, * Áp dụng hệ thức : \(AH^2=AE.AB\)(1) 

Áp dụng định lí Pytago cho tam giác AHC vuông tại H 

\(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\) (2) 

Từ (1) ; (2)  suy ra : \(AE.AB=AC^2-HC^2\)( đpcm )

1: AH=căn 4*9=6cm

AB=căn 4*13=2căn 13(cm)

AC=căn 9*13=3*căn 13(cm)

2: Xét tứ giác ADHE có 

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

=>DE=AH

=>DE^2=HB*HC

3: ΔAHB vuông tại H có HD vuông góc AB

nên AD*AB=AH^2

ΔAHC vuông tại H có HE vuông góc AC

nên AE*AC=AH^2

=>AD*AB=AE*AC

4: BD*BA+AE*AC

=AH^2+BH^2=AB^2

5: AD*AB=AE*AC

=>AD/AC=AE/AB

=>ΔADE đồng dạng với ΔACB

6: góc AED+góc MAC

=góc AHD+góc MCA

=góc ABC+góc ACB=90 độ

=>DE vuông góc AM