K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Bài này cậu nên vẽ hình , bước sau đó cậu làm theo nhìn vào hình

Làm từng phần A ; B ; C dựa trên hình vẽ

Thử lại 

                                                     ~~~~~ Chúc bạn học giỏi nhé ~~~~~

                                                   ♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

4 tháng 4 2017

1) Xét 2 tam giác ACF và HCE có: 

C là góc chung 

A = H = 90 độ 

=>tam giác ACF đồng dạng với tam giác HCE (g_g) 

2) CE là đường phân giác của góc C 

=> \(\frac{AE}{EH}=\frac{AC}{HC}\)(tính chất đường phân giác) (1)

CF là đường phân giác của góc C 

=> \(\frac{AE}{FB}=\frac{AC}{CB}\)(tính chất đường phân giác) (2) 

từ (1) và (2) => AE = AF (cùng bằng AC)  

=> tam giác AEF là tam giác cân và cân tại E

7 tháng 4 2021

undefinedundefined

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABC}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔHBA\(\sim\)ΔHAC(g-g)

Suy ra: \(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

30 tháng 4 2021

#muon roi ma sao con

A B C D F E G

a, Xét tam giác BEF và tam giác DEA ta có : 

^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )

\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1) 

Vậy tam giác BEF ~ tam giác DEA ( c.g.c )

b, Xét tam giác EGD và tam giác EAB ta có : 

^GED = ^EAB ( đ.đ )

\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét )  (2) 

Vậy tam giác EGD ~ tam giác EAB ( c.g.c )

\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )

c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 ) 

Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)

30 tháng 4 2021

A B C D E F H 3 6

a, Xét tam giác AEB và tam giác AFC ta có 

^AEB = ^AEC = 900

^A _ chung 

Vậy tam giác AEB ~ tam giác AFC ( g.g )

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)