K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

Để tính toán độ dài các cạnh của tứ giác ACDM, chúng ta cần áp dụng các định lý trong hình học tam giác và tứ giác. Với tam giác ABC vuông tại A, ta có: - Đường cao AH chia tam giác ABC thành hai tam giác AHM và AHB. - Vì M là trung điểm AB nên AM = MB = 1/2 AB. - Đường thẳng MH là đường vuông góc với AC tại C. Thông tin đã chọn: - HB = 54cm - HC = 96cm Ta sẽ tính độ dài còn lại: a) Tính độ dài AC: Sử dụng định lý Pythagoras trong tam giác vuông góc AHC: AC^2 = AH^2 + HC^2 AC^2 = (AH^2 + HB^2) + HC^2 (vì AH = AM + MH) AC = √(AH^2 + HB^2 + HC^2) AC = √(54^2 + 96^2) b) Tính độ dài DM: Vì M là trung điểm AB nên ta có DM = 1/2 AB = 1/2 AC. c) Tính độ dài AD: Áp dụng định lý Pythagoras trong tam giác AHM: AH^2 = AM^2 + HM^2 AH^2 = (AM^2) + (HM^2) AH = √(AM^ 2 + HM^2) AH = √((1/2 AB)^2 + HB^2) d) Tính độ dài CM: Vì M là trung điểm AB nên CM = 1/2 AC. Kết quả: Từ các tính toán trên, chúng ta có được độ dài các cạnh của tứ giác ACDM.

20 tháng 8 2023

Để tính độ dài các cạnh của tứ giác ACDM, ta cần sử dụng định lý Pythagoras và các quy tắc về đường cao trong tam giác.

Vì tam giác ABC vuông tại A và đường cao AH, ta có: AH^2 + HB^2 = AB^2 Với HB = 54 cm, ta có: AH^2 + 54^2 = AB^2

Vì tam giác ABC vuông tại A và đường cao AH, ta có: AH^2 + HC^2 = AC^2 Với HC = 96 cm, ta có: AH^2 + 96^2 = AC^2

Vì M là trung điểm AB, ta có AM = MB = AB/2. Vì tam giác ABC vuông tại A, ta có AM = AB/2 = AC/2.

Vì M là trung điểm AB và đường thẳng MH vuông góc với AC tại C, ta có: MH^2 + HC^2 = MC^2 Với HC = 96 cm, ta có: MH^2 + 96^2 = (AC/2)^2

Vậy, ta có hệ phương trình: AH^2 + 54^2 = AB^2 AH^2 + 96^2 = AC^2 MH^2 + 96^2 = (AC/2)^2

Từ đó, ta có thể giải hệ phương trình để tính độ dài các cạnh của tứ giác ACDM.

20 tháng 3 2021

anh đây đẹp troai, chim dài mét hai !

2 tháng 4 2021

con ciu 5cm im đi

a: \(AH=2\sqrt{6}\left(cm\right)\)

\(AB=2\sqrt{10}\left(cm\right)\)

\(AC=2\sqrt{15}\left(cm\right)\)

15 tháng 10 2021

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)

29 tháng 10 2021

Giải ra đi

a: AB=2AC

AB^2/AC^2=BH/HC

=>BH/HC=2^2=4

=>BH=4HC

AH^2=HB*HC

=>4HC^2=a^2

=>HC=a/2

=>BH=4*a/2=2a

BC=2a+a/2=5/2*a

\(AB=\sqrt{2a\cdot\dfrac{5}{2}a}=a\sqrt{5}\)

\(AC=\sqrt{2a\cdot\dfrac{1}{2}a}=a\)

b: AM=BC/2=5/4a

MH=căn AM^2-AH^2=căn (5/4a)^2-a^2=3/4a

 

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

17 tháng 6 2017

search : https://hoc24.vn/hoi-dap/question/56467.html