Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a,Xet tu giac ADHE co;
D la hinh chieu tren AB - HD vuong goc AB- gocADH= 90
E la hinh chieu tren AC - HE vuong goc AC- gocAEH=90
- Goc ADH= AEH =DAE =90
suy ra : Tg ADHE la hinh chu nhat
b, S=AB.AC = 1/2.6.10 =30 cm
a) xét tứ giác ADHE :
có góc ADH =góc HEA =DHE(900)
=)ADHE là HCN (DHNB)
Lời giải:
a)
Áp dụng định lý Pitago: BC=AB2+AC2−−−−−−−−−−√=25BC=AB2+AC2=25 (cm)
Theo tính chất đường phân giác:
ADDC=ABBC=1525=35ADDC=ABBC=1525=35
⇔ADAD+DC=33+5⇔ADAD+DC=33+5
⇔ADAC=38⇔AD20=38⇒AD=7,5⇔ADAC=38⇔AD20=38⇒AD=7,5 (cm)
b) Ta có: SABC=AH.BC2=AB.AC2SABC=AH.BC2=AB.AC2
⇒AH.BC=AB.AC⇔AH.25=15.20=300⇒AH.BC=AB.AC⇔AH.25=15.20=300
⇒AH=12⇒AH=12 (cm)
Áp dụng định lý Pitago cho tam giác vuông AHBAHB:
BH=AB2−AH2−−−−−−−−−−√=152−122−−−−−−−−√=9BH=AB2−AH2=152−122=9 (cm)
k cho e vs ạ !!!
cj/anh đừng chép bài đó e lm sai rùi
cj/anh theo link này để xem ạ https://h.vn/hoi-dap/tim-kiem?q=1.+Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+%E1%BB%9F+A+,+AB=15cm,AC=20cm,+%C4%91%C6%B0%E1%BB%9Dng+ph%C3%A2n+gi%C3%A1c+BD++a,+t%C3%ADnh+%C4%91%E1%BB%99+d%C3%A0i+AD++b,+g%E1%BB%8Di+H+l%C3%A0+h%C3%ACnh+chi%E1%BA%BFu+c%E1%BB%A7a+A+tr%C3%AAn+BC+.+T%C3%ADnh+%C4%91%E1%BB%99+d%C3%A0i+AH,HB++c,+cm+tam+gi%C3%A1c+AID+l%C3%A0+tam+gi%C3%A1c+c%C3%A2n&id=632651
Bạn tự vẽ hình nha :
a, Tứ giác AMHN có : \(\widehat{A}=\widehat{M}=\widehat{N}=90^o\)
\(\Rightarrow\) Tứ giác AMHN là hình chữ nhật
b, \(\Delta ABC:\) \(\widehat{A}=90^o\)
\(\Rightarrow\) \(BC^2=AB^2+AC^2\) ( Định lý Py - ta - go )
hay \(BC^2=8^2+15^2=289\)
\(\Rightarrow\) BC = 17 ( cm )
Xét \(\Delta AHB\) và \(\Delta CAB\) có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{B}:chung\)
\(\Rightarrow\) \(\Delta AHB\) đồng dạng \(\Delta CAB\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AH}{AB}=\frac{AC}{BC}\) \(\Rightarrow\) \(AH=\frac{AB.AC}{BC}=\frac{8.15}{17}=\frac{120}{17}\left(cm\right)\)
Mà AMHN là hình chữ nhật
=> \(MN=AH=\frac{120}{17}\left(cm\right)\)
c, Xét \(\Delta AMH\) và \(\Delta AHB\) có :
\(\widehat{A}:chung\)
\(\widehat{AMH}=\widehat{AHB}=90^o\)
\(\Rightarrow\) \(\Delta AMH\) đồng dạng \(\Delta AHB\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AM}{AH}=\frac{AH}{AB}\) \(\Rightarrow\) \(AM.AB=AH^2\) ( 1 )
Tương tự : \(\Delta ANH\) đồng dạng \(\Delta AHC\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AN}{AH}=\frac{AH}{AC}\) \(\Rightarrow\) \(AN.AC=AH^2\) ( 2 )
Từ ( 1 ) và ( 2 ) => đpcm