K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2023

a) Xét △���ABC có �^+�^+�^=180∘A^+B^+C^=180 mà �^=90∘;�^=50∘A^=90;B^=50 suy ra 90∘+50∘+�^=180∘=>�^=40∘90+50+C^=180=>C^=40
b) Xét tam giác △���BEA và △���BEH.
có ��BE là cạnh chung
 ���^=���^(=90∘)��=�� suy  ra △���=△��� (c.h-cgv) ⇒���^=���^  suy BAE=BHE(=90)BA=BH ra ABE=HBE (c.h-cgv) ABE=HBE.
=>��=>BE là phân giác của �^B
c) E là giao điểm của hai đường cao trong tam giác ���BKC nên ��BE vuông góc với ��KC.

Tam giác ���BKC cân tại B có ��BI là đường cao nên ��BI là đường trung tuyến. Do đó I là trung điểm của ��KC.

 

18 tháng 5 2023

a) Xét △���ABC có �^+�^+�^=180∘A^+B^+C^=180 mà �^=90∘;�^=50∘A^=90;B^=50 suy ra 90∘+50∘+�^=180∘=>�^=40∘90+50+C^=180=>C^=40
b) Xét tam giác △���BEA và △���BEH.
có ��BE là cạnh chung
 ���^=���^(=90∘)��=�� suy  ra △���=△��� (c.h-cgv) ⇒���^=���^  suy BAE=BHE(=90)BA=BH ra ABE=HBE (c.h-cgv) ABE=HBE.
=>��=>BE là phân giác của �^B
c) E là giao điểm của hai đường cao trong tam giác ���BKC nên ��BE vuông góc với ��KC.

Tam giác ���BKC cân tại B có ��BI là đường cao nên ��BI là đường trung tuyến. Do đó I là trung điểm của ��KC.

a: góc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

a: goc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

a: góc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC
=>ΔEAK=ΔEHC

=>EK=EC và AK=HC

mà BA=BH

nên BK=BC

mà EK=EC

nên BE là trung trực của KC

=>BE vuong góc KC

a: góc A=90 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔBDC có

DH,CA là đường cao

DH cắt CA tại E

=>E là trực tâm

=>BE vuông góc DC

d: cosB=AB/BC=1/2

=>góc B=60 độ

29 tháng 8 2023

câu a là trứng minh tam giac abe và hbe nhé

 

 

\

 

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

Do đó; ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>EA=EH

=>ΔEAH cân tại E

c: BA=BH

EA=EH

=>BE là trung trực của AH

d: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

Do đó: E là trực tâm

=>BE vuông góc KC

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

14 tháng 8 2016

Xét ΔABE và ΔHBE có:

   \(\widehat{BAE}=\widehat{BHE}=90\) (gt)

   BE:cạnh chung

   \(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

=> ΔABE =ΔHBE(cạnh huyền-góc nhọn)

b) Vì ΔABE=ΔHBE(cmt)

=> AB=BH ; AE=EH

=> B,E \(\in\) đường trung trực của đoạn thẳng AH

=>BE là đường trung trực của đoạn thẳng AH

c) Xét ΔAEK và ΔHEC có:

      \(\widehat{KAE}=\widehat{CHE}=90\left(gt\right)\)

     AE=EH(cmt)

      \(\widehat{AEK}=\widehat{HEC}\)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d) Xét ΔEHC vuông tại H(gt)

=> HE<EC

Mà: HE=AE(cmt)

=>AE<EC

d) Xét ΔHKC có:

KH,CA là hai đường cao

=> E là trực tâm của ΔBKC

=>BE là đường cao

=> AE vuông góc KC

15 tháng 8 2016

a)

xét 2 tam giác vuông ABE và HBE có:

BE(chung)

góc ABE= góc CBE(gt)

=> ΔABE=ΔHBE(CH-GN)

b)

gọi giao của BE và AH là F 

xét ΔABF và ΔHBF có:

AB=HB(theo câu a, ΔABE=ΔHBE)

BF(chung)

góc ABE=góc HBE(gt)

=> ΔABF=ΔHBF(c.g.c)

=>\(\begin{cases}FA=FH\\\widehat{AFB}=\widehat{BFH}=180^o:2=90^o\end{cases}\)

=> BE là đường trung trực của AH

c)

xét ΔAEK và ΔHEC có:

EA=EH(theo câu a, ΔABE=ΔHBE)

góc KAE=góc EHC=90º(gt)

góc AEK=góc CEH(2 góc đối đỉnh)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d)

ta có ΔAEK vuông tại A

=> EK>AE

mà EK=EC(theo câu c)

=> AE<EC

e)

theo câu a, ta có: ΔABE=ΔHBE(CH-GN)

=>AB=HB

theo câu c, ta có: ΔAEK=ΔHEC(g.c.g)

=> AK=HC

ta có: KB=KA+AB

CB=CH+HB

=>KB=CB

=>ΔKBC cân tại B 

ta có:ΔKCB cân tại B có BE là đường phân giác

=>BE đồng thời là đường cao của ΔKBC

=>BE_|_KC 

f)

áp dụng định lí py-ta-go ta có;

\(AC^2=BC^2-AB^2=5^2-3^2=25-9=16\)

\(AC=\sqrt{16}=4\left(cm\right)\)

theo câu e; ta có ΔKBC cân tại B

=> BC=BK=5cm

AK=BC-AB=5cm-3cm=2cm

áp dụng định lí py-ta-go ta có:

\(KC^2=AK^2+AC^2=4^2+2^2=16+4=20\)

\(KC=\sqrt{20}\left(cm\right)\)