Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có \(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)
Vậy \(\widehat{HAB}=30^0\)
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có : \(\widehat{AHB}+\widehat{B}+\widehat{HAB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{HAB}=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(90^0+60^0\right)=30^0\)
Vậy : \(\widehat{HAB}=30^0\)
a) Xét tam giác AHB có: ^AHB = 90o (AH vuông góc với BC).
=> Tam giác AHB vuông tại H.
=> ^B + ^HAB = 90o.
Mà ^B = 60o (gt).
=> ^HAB = 30o.
b) Xét tam giác HAD có: AD = AH (gt).
=> Tam giác HAD cân tại A.
Mà AI là trung tuyến (I là trung điểm của HD).
=> AI là phân giác ^HAD.
=> ^IAH = ^IAD.
c) Xét tam giác HAK và tam giác DAK có:
+ AH = AD (gt).
+ ^KAH = ^KAD (do ^IAH = ^IAD).
+ AK chung.
=> Tam giác HAK = Tam giác DAK (c - g - c).
=> ^AHK = ^ADK (2 góc tương ứng).
Mà ^AHK = 90o (AH vuông góc với BC).
=> ^ADK= 90o.
=> AD vuông góc KD.
Mà AD vuông góc AB (do tam giác ABC vuông tại góc A).
=> AB // KD (Từ vuông góc đến //).
c) Ta có: ^HAB + ^IAH + ^IAD = 90o (do tam giác ABC vuông tại góc A).
<=> ^HAB + 2^IAH = 90o.
Thay số: 30o + 2^IAH = 90o.
<=> ^IAH = 30o.
=> ^IAH = ^HAB = 30o.
Ta có: HA = HE (gt). => H là trung điểm của AE.
Xét tam giác AKE có:
+ HK là đường cao (AH vuông góc với HK).
+ HK là đường trung tuyến (H là trung điểm của AE).
=> Tam giác AKE cân tại K.
=> ^IAH = ^E (Tính chất tam giác cân).
Mà ^IAH = ^HAB (cmt).
=> ^E = ^HAB. => AB // KE (do 2 góc ở vị trí so le trong).
Mà AB // KD (cmt).
=> 3 điểm D, K, E thẳng hàng (đpcm).
a: \(\widehat{HAB}=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
AI chung
HI=DI
Do đó: ΔAHI=ΔADI