Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{ABK}=180^0-100^0=80^0\)
b: Xét tứ giác ABKC có
M là trung điểm của AK
M là trung điểm của BC
Do đó: ABKC là hình bình hành
Suy ra: AC=BK; AB=CK
Xét ΔABK và ΔDAE có
AB=DA
BK=AE
\(\widehat{ABK}=\widehat{DAE}\)
Do đó: ΔABK=ΔDAE
a) Xét ΔACM và Δ KBM có:
MB = MM (gt)
MK = MA (gt)
AMC = BMK (đối đỉnh) => ΔACM = ΔKBM (cgc) => ACM = KBM ( 2 góc tg ứng)
Mà trong tam giác ABC có: A+B+C = 180*=> B+C =80*
=> KBM+ ABC =80*
c: Xét tứ giác BHDM có
A là trung điểm chung của BD và HM
=>BHDM là hình bình hành
=>BH//DM
ta có:BH//DM
H\(\in\)BC
Do đó: DM//BC
d: Ta có: ΔCBD cân tại C
mà CA là đường cao
nên CA là phân giác của góc BCD
Xét ΔCNA vuông tại N và ΔCHA vuông tại H có
CA chung
\(\widehat{NCA}=\widehat{HCA}\)
Do đó: ΔCNA=ΔCHA
=>NA=AH
mà AH=1/2HM
nên NA=1/2HM
Xét ΔNHM có
NA là đường trung tuyến
\(NA=\dfrac{1}{2}HM\)
Do đó: ΔNHM vuông tại N
a/ Xét t/g AMD và t/g BMC có
AM = BM (M là TĐ AB)
\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)
=> t/g AMD = t/g BMC (c.g.c)
b/ Xets t/g BMD và t/g AMC có
BM = AM
\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)
=> t/g BMD = t/g AMC (c.g.c)
=> \(\widehat{ABD}=\widehat{BAC}=90^o\)
=> BD ⊥ AB (1)
c/ Xét t/g BNE và t/g CNA có
BN = CN (N là TĐ BC)
\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)
=> T/g BNE = t/g CNA (c.g.c)
=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)
=> BE ⊥ AB (2) Từ (1) và (2)
=> D , B , E thẳng hàng