K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trực của AE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

c: AD=DE

DE<DC

=>AD<DC

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trựccủa AE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=gócEDC

=>ΔDAF=ΔDEC

=>DF=DC

c: AD=DE
mà DE<DC

nên AD<DC

d: Xet ΔBFC có BA/AF=BE/EC

nên AE//CF

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

d: AD=DE

DE<DC

=>AD<DC

e: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

loading...  loading...  

3 tháng 8 2021

undefined

Xét ΔBAD và ΔBDE có:

BD là cạnh chung

B1=B2 (BD là tia phân giác của \(\widehat{B}\))

BA = BE (GT)

Nên ΔBAD= ΔBDE (c.g.c)

=>\(\widehat{ADB}=\widehat{BDE}\)

Ta có:\(\widehat{ADB}+\widehat{ADF}=\widehat{BDF}\)

         \(\widehat{BDE}+\widehat{EDC}=\widehat{BDC}\)

Mà :\(\widehat{ADB}=\widehat{BDE}\)(CMT)

        \(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh)

=>\(\widehat{BDF}=\widehat{BDC}\)

Xét ΔBDF và Δ BDC, có:

\(\widehat{BDF}=\widehat{BDC}\)

BD là cạnh chung

B1=B2

Nên ΔBDF=ΔBDC (g.c.g)

=>DC = DF

b)Ta có:ΔEDC vuông tại E=> DC là cạnh lớn nhất hay DC>DE

MÀ DE=AD (ΔBAD và ΔBDE)

=> AD< DC

 

3 tháng 8 2021

c) Ta có BE=BA=>ΔBEA cân tại B

Mà BD là tia phân giác=>BD là đường trung trực

Vì :ΔBDF=ΔBDC=>BF=BC 

=>ΔBFC cân tại B=>\(\widehat{C}=\widehat{F}\)

Ta có:\(\widehat{B}+\widehat{C}+\widehat{F}=180^o\)

=>\(\widehat{B}+\widehat{C}.2=180^O\)

=>\(\widehat{C}=\dfrac{180^O-\widehat{B}}{2}\)(1)

vÌ ΔBAE  cân tại B

Tương tự ta có:

\(\widehat{E}=\dfrac{180^o-\widehat{B}}{2}\)(2)

Từ (1) và (2)=> \(\widehat{E}=\widehat{C}\)

Mà 2 góc này ở vị trí đồng vị=>AE // FC

a: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE và DA=DE
hay BD là đường trung trực của AE

b: Ta có: AD=DE

mà DE<DC

nên AD<CD

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(Hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

c) Ta có: ΔABD=ΔEBD(cmt)

nên DA=DE(hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

11 tháng 8 2021

a, Xét tam giác ABD và tam giác EBD có:
     góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
     BD=BD(chung)
     góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
   AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....


  
 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE

1 tháng 5 2019

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

15 tháng 2 2021

san8iiiiii