K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Áp dụng định lý Pytago cho  ABH vuông tại A có:

Áp dụng hệ thức lượng trong ∆ ABC vuông tại A có đường cao AH ta có:

Vì AM là đường trung tuyến  M là trung điểm BC

Ta có: MH = BM – BH = 25 – 18 = 7 cm

Đáp án cần chọn là: A

11 tháng 9 2016

BH=18 cm

MH=7 cm

MC= 25 cm

AH=24 cm

11 tháng 9 2016

BH = 18 cm ; MH = 7 cm ;                                          MC = 25 cm ; AH = 24 cm.                                        Chỉ có đáp án thôi nha! 

2 tháng 9 2021

a, Ta có : \(AB=\frac{2}{3}AC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{144}=\frac{1}{\left(\frac{2}{3}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC=6\sqrt{13}\)cm 

=> \(AB=\frac{2}{3}.6\sqrt{13}=4\sqrt{13}\)cm 

Theo định lí Pytago tam giác ABH vuông tại H 

\(BH=\sqrt{AB^2-AH^2}=8\)cm 

Theo định lí Pytago tam giác AHC vuông tại H

\(CH=\sqrt{AC^2-AH^2}=18\)cm 

=> BC = HB + HC = 8 + 18 = 26 cm 

b, Vì AM là đường trung tuyến tam giác ABC => BM = MC = BC / 2 = 13 cm 

Ta có : BH + MH = BM => MH = BM - BH = 13 - 8 = 5 cm 

a: \(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{30\cdot40}{50}=24\left(cm\right)\)

b: \(BH=\dfrac{AB^2}{BC}=\dfrac{30^2}{50}=18\left(cm\right)\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=MC=MB=BC/2=25(cm)

c: \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

a: Ta có: \(AB=\dfrac{2}{3}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{4}{9}\)

\(\Leftrightarrow HB=\dfrac{4}{9}HC\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{4}{9}=144\)

\(\Leftrightarrow HC^2=324\)

\(\Leftrightarrow HC=18\left(cm\right)\)

\(\Leftrightarrow HB=8\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{8\cdot26}=4\sqrt{13}\left(cm\right)\)

24 tháng 7 2020

Câu c) 

Ta có: AD là phân giác ^BAC 

=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o 

Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o 

=> ^ABI = 45o 

Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân 

có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM 

=> BM = 2 BI 

Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB = BI.BM = BI.2BI = 2BI2 

Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB= BH.BC 

=> BH.BC = 2BI2