K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

Xét tam giác ABC có góc A=90 độ

Aps dụng tính chất điịnh lý Py-ta-go,ta có:

AB^2+AC^2=BC^2

=>AC^2=BC^2-AB^2

=>AC^2=10^2-6^2

=>AC^2=100-36

=>AC^2=64

=>AC=8 cm

b)Trong tam giác ABC,góc A=90 độ,góc B=60 độ,góc C=30 độ(vì các cạnh trong hình có tỉ lệ giống với tam giác Ai Cập là 3;4;5)

10 tháng 5 2017

ai muốn kết bn với mình thì hãy click trước đã

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Lời giải:

a) 

Theo định lý Pitago ta có:

$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm)

b) 

Từ kết quả phần a ta suy ra:

$BC>AC> AB$

$\Rightarrow \widehat{A}> \widehat{B}> \widehat{C}$ 

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Hình vẽ:

undefined

21 tháng 4 2022

các bạn giúp mink với

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

19 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

            \(BC^2\)=\(AB^2+AC^2\)

=>    \(AC^2=BC^2-AB^2\)

=>    \(AC^2=100-36\)

=>    \(AC^2=64\)cm => AC=8 cm

vậy AC=8 cm

vì BC>AC>AB(10cm>8cm>6cm)

=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm

b, Xét 2 t.giác vuông BCA và DCA có:

               AB=AD(gt)

              AC cạnh chung

=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)

=> BC=DC(2 cạnh tương ứng)

=>t.giác BCD cân tại C (đpcm)

19 tháng 4 2019

c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M

=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)

=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm

vậy MC\(\approx\)5,3 cm

a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)

mà góc đối diện với cạnh AB là góc ACB

và góc đối diện với cạnh BC là góc BAC

và góc đối diện với cạnh AC là góc ABC

nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)

hay BC=8(cm)

Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)

mà góc đối diện với cạnh AB là góc ACB

và góc đối diện với cạnh BC là góc BAC

và góc đối diện với cạnh AC là góc ABC

nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)