K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

bán kính bằng 2,5 => chu vi bằng 2,5 .   2  . số pi = khoảng 15 ,7

kết quả là 15,7 nha !

10 tháng 3 2016

Có MNPA là hcn (đường TB) => MNPA cùng thuộc đường tròn. CÓ MP là đường chéo hcn => là đường kính hình tròn

22 tháng 3 2016

https://scontent-hkg3-1.xx.fbcdn.net/hphotos-xfa1/v/t1.0-9/10257284_226132444248207_6976770560449147924_n.jpg?oh=12c1cd68165b4b582425168184b12d12&oe=57850391

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0

1: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}+47^0=90^0\)

=>\(\widehat{C}=43^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{10}{sin43}\simeq14,66\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq10,72\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot CB}=\dfrac{BH}{CH}\)

Xét ΔHAB vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BD=\dfrac{BH^2}{AB}\)

Xét ΔHAC vuông tại H có HE là đường cao

nên \(CE\cdot CA=CH^2\)

=>\(CE=\dfrac{CH^2}{AC}\)

\(\dfrac{BD}{EC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\left(\dfrac{BH}{CH}\right)^2\cdot\dfrac{AC}{AB}=\left(\dfrac{AB^2}{AC^2}\right)^2\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^3}{AC^3}\)

11 tháng 1 2016

áp dụng công thức S=abc/4R với abc là độ dài 3 cạnh của tam giác
cách chứng minh để sau nhé, hiện giờ mình lag quá không chứng minh được

11 tháng 1 2016

tâm đường tròn ngoại tiếp nhé, Tuấn Anh sai rồi

1 tháng 7 2019

4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.

Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác  B D C ^

Ta có  K Q C ^ = 2 K M C ^  (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))

N D C ^ = K M C ^  (góc nội tiếp cùng chắn cung  N C ⏜ )

Mà  B D C ^ = 2 N D C   ^ ⇒ K Q C ^ = B D C ^

Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở  ⇒ B C D ^ = B C Q ^  do vậy D, Q, C thẳng hàng nên KQ//PK

Chứng minh tương tự ta có  ta có D, P, B thẳng hàng và DQ//PK

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).