Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
haizzz , mình thấy trên mạng ns đây là lớp 9 mình ms lớp 7 thôi , xl
Áp dụng định lý pytago vào tam giác ABC ta có: \(AB^2+AC^2=BC^2=102^2=10404\)
Theo bài ra ta có: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{10404}{289}=36\)
\(\Rightarrow\frac{AB^2}{64}=36\Rightarrow AB^2=2304\Rightarrow AB=48\left(cm\right)\left(AB>0\right)\)
\(\frac{AC^2}{225}=36\Rightarrow AC^2=8100\Rightarrow AC=90\left(cm\right)\left(AC>0\right)\)
Vậy AB = 48cm, AC = 90cm
4) ti lê canh huyen la: 52 + 122 = 132
ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52
5) cac canh bang 20;48 ;52
la tg vuong vi 522 = 482+202.
( giai toan giup bạn )
Đặt AB=a; AC=b
Theo đề, ta có: a/3=b/4
Đặt a/3=b/4=k
=>a=3k; b=4k
Theo đề, ta có: 3k+4k+5k=36
=>12k=36
=>k=3
=>AB=9; AC=12; BC=15
a: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên D là trung điểm của BC
hay BD=CD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
c: Đặt AD/4=BD/3=k
=>AD=4k; BD=3k
Xét ΔADB vuông tại D có \(AB^2=AD^2+BD^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AD=8(cm)
a) Xét tam giác ABC cân tại A:
AD là phân giác góc A (gt).
=> AD là trung tuyến (T/c tam giác cân).
=> D là trung điểm của BC.
=> BD = CD.
b) Xét tam giác ABC cân tại A:
AD là phân giác góc A (gt).
=> AD là đường cao (T/c tam giác cân).
=> AD vuông góc với BC.
c) Ta có: \(\dfrac{AD}{BD}=\dfrac{4}{3}.\Rightarrow BD=\dfrac{3}{4}AD.\)
Xét \(\Delta ADB\) vuông tại D:
\(AB^2=AD^2+BD^2\left(Pytago\right).\\ \Rightarrow AB^2=AD^2+\left(\dfrac{3}{4}AD\right)^2.\\ \Leftrightarrow AB^2=AD^2+\dfrac{9}{16}AD^2=\dfrac{25}{16}AD^2.\\ \Rightarrow10^2=\dfrac{25}{16}AD^2.\\ \Rightarrow AD^2=64.\\ \Rightarrow AD=8\left(cm\right).\)
Từ (gt) :AB/3=AC/4 suy ra AB=AC/4*3
AD định lí pythagore vào tam giác ABC ta có:BC^2=AB^2+AC^2=(AC/4*3)^2+AC^2=9/16*AC^2+AC^2
AC^2*(9/16+1)=BC^2=150^2=22500 suy ra AC^2=22500/(9/16+1)=14400 suy ra AC= căn14400 =120
Suy ra AB=120*3/4=90
Vậy AB=90,AC=120
(đơn vị tự thêm)