Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phải là tam giác ABC vuông chứ ?
A B C 6 8 H
a, Xét tam giác BHA và tam giác BAC ta có :
^B chung
^BHA = ^BAC = 900
Vậy tam giác BHA ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng )
tương tự với CHA ~ tam giác CAB ( g.g )
\(\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\)( tỉ số đồng dạng )
b, tam giác ABC vuông tại A, AH là đường cao
Áp dụng định lí Py ta go ta có :
\(BC^2=AB^2+AC^2=26+64=100\Rightarrow BC=10\)cm
Ta có : \(\frac{AH}{AB}=\frac{AB}{BC}\Rightarrow AB.AC=AH.BC\)( cma )
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}\)cm
Ta có : \(\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=HC.BC\)
\(\Rightarrow64=HC.10\Rightarrow HC=\frac{64}{10}=\frac{32}{5}\)cm
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
B góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c =>
a) Xét \(\Delta HBA\)và \(\Delta ABC\)
ta có \(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABC}\)chung
nên \(\Delta HBA\)\(\Delta ABC\)(g - g)
b) Xét \(\Delta ABC\)ta có
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=20\left(cm\right)\)
có \(\Delta HBA\)\(\Delta ABC\)
nên \(\frac{AH}{AC}=\frac{AB}{BC}\)và \(\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow AH=9,6\left(cm\right);BH=7,2\left(cm\right)\)
c) Xét \(\Delta ABC\)
có AD là phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
mà có BD + CD = BC = 20
nên BD = \(\frac{60}{7}\)
d)có AK + KH = AH
suy ra KH = 6 (cm)
có
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
a) Xét ΔHCA vuông tại H và ΔACB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔHCA\(\sim\)ΔACB(g-g)
xét Tam giác HBA và Tam giác ABC có
B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6
a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔHCA đồng dạng với ΔACB
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
=>\(BD=\dfrac{30}{7}\left(cm\right);CD=\dfrac{40}{7}\left(cm\right)\)