Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Ta thấy $ED\perp AB, EF\perp AC$
$\Rightarrow \widehat{EDA}=\widehat{EFA}=90^0$
Tứ giác $ADEF$ có 3 góc $\widehat{A}=\widehat{D}=\widehat{F}=90^0$ nên là hình chữ nhật.
b.
Vì $ED\perp AB, AB\perp AC\Rightarrow ED\parallel AC$
Theo định lý Talet thì:
$\frac{BD}{DA}=\frac{BE}{EC}=1$
$\Rightarrow BD=DA$
$\Rightarrow D$ là trung điểm $AB$
Tương tự $F$ là trung điểm $AC$
$\Rightarrow DF$ là đường trung bình ứng với cạnh $BC$ của tam giác $ABC$
$\Rightarrow DF\parallel BC$ và $DF=\frac{1}{2}BC$
Hay $DF\parallel BE$ và $DF=BE$
$\Rightarrow BDFE$ là hình bình hành.
a: Xét tứ giác ADEF có
góc ADE=góc AFE=góc FAD=90 độ
=>ADEF là hình chữ nhật
b: Xét ΔABC có
E là trung điểm của CB
ED//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
E là trung điểm của CB
EF//AB
Do đó: F là trung điểm của AC
Xét ΔABC có
D,F lần lượt là trung điểm của AB,AC
=>DF là đường trung bình
=>DF//BC và DF=1/2BC
c: DF//BC và DF=1/2BC
mà \(E\in BC;BE=\dfrac{1}{2}BC\)
nên DF//BE và DF=BE
Xét tứ giác BDFE có
DF//BE
DF=BE
Do đó: BDFE là hình bình hành
d: Xét ΔABC có
E là trung điểm của CB
EF//AB
Do đó: F là trung điểm của AC
e: Xét ΔABC có
D,E lần lượt là trung điểm của BA,BC
=>DE là đường trung bình
=>DE=1/2AC
ΔHAC vuông tại H
mà HF là trung tuyến
nên HF=AC/2
=>DE=HF
Xét tứ giác DHEF có
DF//EH
DE=FH
Do đó: DHEF là hình thang cân
Sửa đề: F là hình chiếu của E trên AC
a: Xét ΔCAB có
E là trung điểm của CB
EF//AB
=>F là trung điểm của AC
Xét ΔCAB có
E là trung điểm của CB
ED//AC
=>D là trung điểm của AB
Xét ΔABC có EF//AB
nên EF/Ab=CE/CB=1/2
=>EF=1/2AB=DB
Xét tứ giác BDFE có
FE//BD
FE=BD
=>BDFE là hình bình hành
b: Xét ΔABC có AD/AB=AF/AC
nên DF//BC
=>DF//EH
ΔHAC vuông tại H có HF là trung tuyến
nên HF=AC/2
=>HF=ED
Xét tứ giác EHDF có
EH//DF
ED=HF
=>EHDF là hình thang cân
c: Xét tứ giác ABCN có
F là trung điểm chung của AC và BN
=>ABCN là hình bình hành
=>AN//CB
Xét tứ giác AMCE có
F là trung điểm chung của AC và ME
=>AMCE là hình bình hành
=>AM//CE
=>AM//CB
mà AN//CB
nên A,N,M thẳng hàng
Xét ΔABC có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AECM có
F là trung điểm của AC
F là trung điểm của EM
Do đó: AECM là hình bình hành
=>AM//CE
=>AM//CB
Xét tứ giác NMBE có
F là trung điểm chung của NB và ME
=>NMBE là hình bình hành
=>NM//BE
=>NM//BC
AM//BC
NM//BC
mà AM,NM có điểm chung là M
nên M,N,A thẳng hàng
Xét tứ giác
a: Xét ΔABC có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔABC
=>FE//AB và \(FE=\dfrac{AB}{2}\)
Ta có: FE//AB
D\(\in\)AB
Do đó: FE//AD và FE//BD
Ta có: \(FE=\dfrac{AB}{2}\)
\(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)
Do đó: FE=AD=DB
Xét tứ giác ADEF có
FE//AD
FE=AD
Do đó: ADEF là hình bình hành
Hình bình hành ADEF có \(\widehat{FAD}=90^0\)
nên ADEF là hình chữ nhật
=>AE=DF
Xét tứ giác BEFD có
FE//BD
FE=BD
Do đó: BEFD là hình bình hành
b: Xét ΔABC có
D,F lần lượt là trung điểm của AB,AC
=>DF là đường trung bình của ΔABC
=>DF//BC và DF=BC/2
Ta có: DF//BC
E,H\(\in\)BC
Do đó: DF//EH
Ta có: ΔHAC vuông tại H
mà HF là đường trung tuyến
nên HF=FA
mà FA=ED(ADEF là hình chữ nhật)
nên HF=ED
Xét tứ giác EHDF có EH//DF
nên EHDF là hình thang
Hình thang EHDF có ED=HF
nên EHDF là hình thang cân
c: Xét tứ giác AECI có
F là trung điểm chung của AC và EI
=>AECI là hình bình hành
=>AI//CE
mà E\(\in\)CB
nên AI//CB
Xét tứ giác BIKE có
F là trung điểm chung của BK và IE
=>BIKE là hình bình hành
=>IK//EB
mà E\(\in\)BC
nên IK//BC
Ta có: AI//BC
IK//BC
AI,IK có điểm chung là I
Do đó: A,I,K thẳng hàng
Do MD\(\perp\)AB tại D =)\(\widehat{A\text{D}M}\)=900
Do ME\(\perp\)AC tại E =)\(\widehat{A\text{E}M}\)=900
Do tam giác ABC vuông tại A =) \(\widehat{BAC}\)=900
Xét tứ giác ADME có:
\(\widehat{A\text{D}M}\)=\(\widehat{A\text{E}M}\)=\(\widehat{BAC}\) ( vì cùng bằng 900)
=) ADME là hình chữ nhật
Xét tam giác ABC có :
M là trung điểm của BC
MD // AC
=) D là trung điểm của AB
Xét tam giác ABC có :
M là trung điểm của BC
ME // AB
=) E là trung điểm của AC
Xét tam giác ABC có :
D là trung điểm của AB
E là trung điểm của AC
=) DE là đường trung bình của tam giác ABC
=) DE //BC =) DE //BM (1)
Và DE= \(\frac{BC}{2}\)=BM=CM (vì M là trung điểm của BC ) (2)
Từ (1) và (2) =) BDEM là hình bình hành
Để chứng minh ADEF là hình chữ nhật, ta cần chứng minh các đẳng thức đường cao AH = trung tuyến AE và hình chiếu D, F của E trên AB, AC vuông góc với AB, AC.
a) Chứng minh AH = AE: Vì tam giác ABC là tam giác vuông tại A, nên đường cao AH cũng là đường cao của tam giác vuông ABC. Do đó, ta có AH = BH. Từ tam giác ABC, ta có AE là trung tuyến nên AE = EC. Vậy, AH = AE.
b) Chứng minh AD = AF: Ta có hai tam giác vuông ADE và AFE có cạnh chung AE. Vì AE là trung tuyến nên ta có DE = FE, và góc ADE = góc AFE = 90 độ (do DE và FE vuông góc với AB, AC). Do đó, ta có hai tam giác ADE và AFE đồng dạng (cạnh góc). Từ đó suy ra, AD = AF.
Vì AH = AE và AD = AF, nên tứ giác ADEF là hình chữ nhật.
c) Chứng minh BDFE là hình bình hành: Ta đã chứng minh được AD = AF, nên BD = BF (do AB < AC). Vì DE = EF (vì trung tuyến), và góc EDF = góc EBF = 90 độ (hình chiếu của E trên AB, AC vuông góc với AB, AC), nên ta có hai cạnh và một góc tương đương nhau. Do đó, tứ giác BDFE là hình bình hành.
d) Chứng minh F là trung điểm của AC: Vì AE là trung tuyến của tam giác ABC, nên F là trung điểm của AC.
Vậy, ta đã chứng minh được các yêu cầu đề bài.