Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).
b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)
c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).
Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).
d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:
Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)
\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)
Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca
D C H B A
Mình nói tóm tắt thôi nhé!
a) chứng minh được tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn) => AD = DH (2 cạnh tương ứng)
b) tam giác HDC vuông tại H nên DC là cạnh lớn nhất => DC > DH; mà DH = AH (c/m trên) => DC > AD
c) Mình chưa nghĩ ra
Câu c là tính HC nhé bạn!
c) Tính BC bằng cách dùng định lí pytago trong tam giác ABC, ta có: BC = 10cm
BH + HC = BC = 10cm
BH = AB = 6cm
=> HC = 10 - 6 = 4 cm
Chúc bạn học tốt!
b/
Xét \(\Delta ABD\) và \(\Delta EBC\) có:
\(\widehat{A}=\widehat{E}=90^o\) ( vì \(\Delta ABC\) vuông tại A và \(CE\perp BD\) tại E)
\(\widehat{ABD}=\widehat{EBC}\) ( vì BD là tia phân giác của \(\widehat{ABC}\) )
\(\Rightarrow\Delta ABD~\Delta EBC\left(g.g\right)\)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AD}{EC}\) ( 2 cặp cạnh tương ứng tỉ lệ)
\(\Rightarrow BD.EC=BC.AD\)
c/ Vì \(\Delta ABD~\Delta EBC\left(cmt\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{ECB}\)
Mà \(\widehat{ADB}=\widehat{EDC}\) ( 2 góc đối đỉnh)
\(\Rightarrow\widehat{EDC}=\widehat{ECB}\)
Xét \(\Delta ECD\) và \(\Delta EBC\) có:
\(\widehat{E}\) là góc chung
\(\widehat{EDC}=\widehat{ECB}\left(cmt\right)\)
\(\Rightarrow\Delta ECD~\Delta EBC\left(g.g\right)\)
\(\Rightarrow\dfrac{EC}{EB}=\dfrac{CD}{BC}\) ( 2 cặp cạnh tương ứng tỉ lệ)
d/ Xét \(\Delta EBC\) vuông tại E, đường cao EH ứng với cạnh BC
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(EC^2=CH.CB\) (3)
Vì \(\Delta ECD~\Delta EBC\left(cmt\right)\)
\(\Rightarrow\dfrac{ED}{EC}=\dfrac{EC}{EB}\) ( 2 cặp cạnh tương ứng tỉ lệ)
\(\Rightarrow EC.EC=ED.EB\)
\(\Leftrightarrow EC^2=ED.EB\left(4\right)\)
Từ (3) và (4) \(\Rightarrow CH.CB=ED.EB\)
đỉnh thế