K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

d: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

hay BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)

Do đó: BD=15/7(cm); CD=20/7(cm)

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA∼ΔHAC

c: Ta có: ΔHBA∼ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

4 tháng 6 2020

a)Xét ΔHAB và ΔABC  {AHBˆ=ABCˆCABˆ:chung  ⇒ΔAHB∼ΔABC(g−g)  b)Xét ΔABC ta có:  BC2=AC2+AB2  BC2=162+122  BC2=400  BC=400−−−√=20cm  Ta có ΔHAB~ΔABC(câu a)  ⇒AHAC=ABBC⇔AH16=1220  ⇒AH=12.1620=9,6cm  Xét ΔHBA ta được:  AH2+BH2=AB2  BH2=AB2−AH2  BH2=122−9,62  BH2=51,84  ⇒BH=51,84−−−−−√=7,2cm  c)Vì AD là đường phân giác của ΔABC nên:  ABBD=ACCD⇔ABBC−CD=ACCD  ⇔AB.CDCD.(BC−CD)=AC.(BC−CD)CD.(BC−CD)  ⇔AB.CD=AC.(BC−CD)   ⇔12.CD=16.20−16.CD  ⇔12.CD+16.CD=320  ⇔28.CD=320  ⇔CD=32028≈11.43(cm)  Độ dài cạnh BC là:  BD=BC-CD  BD=20−32028≈8,57(cm)

4 tháng 5 2023

câu hỏi chưa rõ

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

NV
22 tháng 4 2021

Do E là chân đường phân giác góc D, theo định lý phân giác:

\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)

Ta có:

\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)

\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\)  \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)

(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)

\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)

NV
22 tháng 4 2021

undefined

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm