K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

bạn tự vẽ hình nka !!!

a) , b) Theo định lí Py - ta - go trong   \(\Delta ABC\)vuông tại A , ta có : 

\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)

    Xét \(\Delta AHB\)và   \(\Delta CAB\)có :

\(\widehat{ABC}\)chung     ;        \(\widehat{BHA}=\widehat{BAC}=90\)độ

\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)

\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)

c) ta có :    \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\)   ( do AM là đường trung tuyến ứng với cạnh huyền BC )

  Theo định lí Py - ta - go trong   \(\Delta AHM\)vuông tại H , ta có : 

\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)

\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)

TK CKO MK NKA !!!

23 tháng 3 2018

B A C H M

Mấy bài này cũng easy thôi

a) \(\Delta ABC;\widehat{A}=1v\left(gt\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}\)\(=20\left(cm\right)\)

Tam giác ABC đồng dạng với tam giác HBA ( \(\widehat{B}\)chung \(\widehat{BAC}=\widehat{BAH}=90^0\))

\(\Rightarrow\frac{AB}{BH}=\frac{AC}{AH}=\frac{BC}{AB}\)

hay \(\frac{12}{BH}=\frac{16}{AH}=\frac{20}{12}=\frac{10}{6}\)

\(\Rightarrow AH=\frac{16.6}{10}=9,6\left(cm\right)\)

\(\Rightarrow BH=\frac{12.6}{10}=7,2\left(cm\right)\)

\(\Rightarrow HC=BC-BH=20-7,2=12,8\)( cm )

b) \(\Delta HMA\)vuông tại H

\(\Rightarrow S_{HMA}=\frac{1}{2}HM.AH\)\(=\frac{1}{2}.2,8.9,6=13,44\left(cm^2\right)\)

Bài làm

b) Xét tam giác HAP có:

Q là trung điểm BH

P là trung điểm AH

=> QP là đường trung bình

=> QP // AB 

=> \(\widehat{HQP}=\widehat{QPA}\)

Xét tam giác HQP và tam giác ABC có:

\(\widehat{HQP}=\widehat{QPA}\)

\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)

=> Tam giác HQP ~ Tam giác ABC ( g - g )

=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\)             (1)

Xét tam giác HAB có: 

QP // AB

=> Tam giác HQP ~ HAB 

=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\)             (2)

Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)

Xét tam giác AHC vuông ở H có: 

\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)

Xét tam giác ABC vuông ở A có:

\(\widehat{CBA}+\widehat{BCA}=90^0\)  (4)

Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)

Xét tam giác ABQ và tam giác CAP có:

\(\frac{AB}{AC}=\frac{QB}{PA}\)

\(\widehat{PAC}=\widehat{CBA}\)

=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )

Bài làm

a) Vì AM là trung tuyến

=> M là trung điểm BC 

=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )

Ta có: BH + HM + MC = BC

=> BH + HM + MC = BH + HC

hay 9 + HM + 12,5 = 9 + 16

=> HM = 9 + 16 - 9 - 12,5 

=> HM = 3,5 ( cm )

Vì tam giác ABC là tam giác vuông ở A

Mà AM trung tuyến

=> AM = MC = BM = 12,5 ( cm )

Xét tam giác AHM vuông ở H có:

Theo định lí Pytago có:

AH2 = AM2 - HM2 

hay AH2 = 12,52 - 3,52 

=> AH2 = 156,25 - 12,25

=> AH2 = 144

=> AH = 12 ( cm )

SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )

Xét tam giác AHB vuông ở H có:

Theo định lí Py-ta-go có:

AB2 = BH2 + AH2 

=> AB2 = 92 + 212 

=> AB2 = 81 + 441

=> AB2 = 522

=> AB \(\approx\)22,8 ( cm )

Xét tam giác AHC vuông ở H có: 

Theo định lí Pytago có:

AC2 = AH2 + HC2 

=> AC2 = AH2 + ( HM + MC )2 

hay AC2 = 212 + ( 3,5 + 12,5 )2 

=> AC2 = 441 + 256

=> AC2 = 697

=> AC \(\approx\)26,4 ( cm )

Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )

SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )

8 tháng 5 2019

a) 

Ta có \(\Delta ABC\approx\Delta HBA\)vì hai tam giác vuông này có chung góc nhọn B 

Lại có \(\Delta ABC\approx\Delta HAC\)có chung góc nhọn C

\(\Rightarrow\Delta HBA\approx\Delta HAC\)(tính chất bắc cầu)

b)Ta có AM là trung tuyến nên \(BM=\frac{1}{2}\left(BH+CH\right)=\frac{13}{2}\)

\(HM=BM-BH=\frac{13}{2}-4=\frac{5}{2}\)

Vì \(\Delta HBA\approx\Delta HAC\)nên 

\(\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow\frac{4}{HA}=\frac{HA}{9}\)

\(\Rightarrow HA^2=36\Rightarrow HA=6\)

\(S_{ABC}=\frac{\frac{5}{2}\cdot6}{2}=\frac{15}{2}\left(cm^2\right)\)

9 tháng 5 2019

Bạn ơi tính diện tích tam giác AHM nha 

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

b: BH=AB^2/BC=9cm

CH=25-9=16cm