Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có
E,M lần lượt là trung điểm của CA,CB
=>EM là đường trung bình của ΔCAB
=>EM//AB và \(EM=\dfrac{AB}{2}\)
\(EM=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)
b: Xét tứ giác ABDE có
DE//AB
BD//AE
Do đó: ABDE là hình bình hành
Hình bình hành ABDE có \(AB=AE\left(=\dfrac{AC}{2}\right)\)
nên ABDE là hình thoi
Hình thoi ABDE có \(\widehat{BAE}=90^0\)
nên ABDE là hình vuông
=>\(S_{ABDE}=AB^2=4^2=16\left(cm^2\right)\)
c: BAED là hình vuông
=>BD//AE và BD=AE
BD//AE
E\(\in\)AC
Do đó: BD//CE
BD=AE
AE=CE
Do đó: BD=CE
Xét tứ giác BDCE có
BD//CE
BD=CE
Do đó: BDCE là hình bình hành
=>BE=CD
ABDE là hình vuông
=>AD cắt BE tại trung điểm của mỗi đường
=>I là trung điểm chung của AD và BE
=>\(BI=\dfrac{1}{2}BE\)
Xét ΔABC có
AM,BE là đường trung tuyến
AM cắt BE tại K
Do đó: K là trọng tâm của ΔABC
=>\(BK=\dfrac{2}{3}BE\)
\(\dfrac{BI}{BK}=\dfrac{\dfrac{1}{2}BE}{\dfrac{2}{3}BE}=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)
=>\(BI=\dfrac{3}{4}BK\)
BI+IK=BK
=>\(\dfrac{3}{4}BK+IK=BK\)
=>\(IK=\dfrac{1}{4}BK=\dfrac{1}{4}\cdot\dfrac{2}{3}\cdot BE=\dfrac{1}{6}BE\)
mà BE=CD
nên \(IK=\dfrac{1}{6}CD\)
=>CD=6IK
a: \(BC=\sqrt{6^2+12^2}=6\sqrt{5}\left(cm\right)\)
=>\(IM=\dfrac{AB}{2}=3cm\)
b: Xét tứ giác ABCD có
ID//AB
IA//DB
góc IAB=90 độ
IA=AB
Do đó: ABCD là hình vuông
Xét ΔABC có
E là trung điểm của AC
M là trung điểm của BC
Do đó: EM là đường trung bình
=>EM//AB
hay EM⊥AC
Xét tứ giác AEDB có
\(\widehat{DEA}=\widehat{DBA}=\widehat{EAB}=90^0\)
Do đó: AEDB là hình chữ nhật
mà AB=AE
nên AEDB là hình vuông
Lời giải:
Vì $M,E$ lần lượt là trung điểm của $BC, AC$ nên $ME$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$
$\Rightarrow ME=\frac{AB}{2}=\frac{4}{2}=2$ (cm)
Mặt khác, $ME$ là đường trung bình nên $ME\parallel AB$ hay $ED\parallel AB$
$Bx\parallel AC\Leftrightarrow BD\parallel AE$
Tứ giác $ABDE$ có 2 cặp cạnh đối $BD,AE$ và $AB, DE$ song song nhau nên $ABDE$ là hình bình hành. Mà $\widehat{A}=90^0$ (gt) nên $ABDE$ là hình chữ nhật.
Hình chữ nhật $ABDE$ có cạnh kề $AB=AE(=4)$ nên $ABDE$ là hình vuông. (đpcm)