K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAB có

E,M lần lượt là trung điểm của CA,CB

=>EM là đường trung bình của ΔCAB

=>EM//AB và \(EM=\dfrac{AB}{2}\)

\(EM=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)

b: Xét tứ giác ABDE có

DE//AB

BD//AE

Do đó: ABDE là hình bình hành

Hình bình hành ABDE có \(AB=AE\left(=\dfrac{AC}{2}\right)\)

nên ABDE là hình thoi

Hình thoi ABDE có \(\widehat{BAE}=90^0\)

nên ABDE là hình vuông

=>\(S_{ABDE}=AB^2=4^2=16\left(cm^2\right)\)

c: BAED là hình vuông

=>BD//AE và BD=AE

BD//AE

E\(\in\)AC

Do đó: BD//CE

BD=AE

AE=CE

Do đó: BD=CE

Xét tứ giác BDCE có

BD//CE

BD=CE

Do đó: BDCE là hình bình hành

=>BE=CD

ABDE là hình vuông

=>AD cắt BE tại trung điểm của mỗi đường

=>I là trung điểm chung của AD và BE

=>\(BI=\dfrac{1}{2}BE\)

Xét ΔABC có

AM,BE là đường trung tuyến

AM cắt BE tại K

Do đó: K là trọng tâm của ΔABC

=>\(BK=\dfrac{2}{3}BE\)

\(\dfrac{BI}{BK}=\dfrac{\dfrac{1}{2}BE}{\dfrac{2}{3}BE}=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)

=>\(BI=\dfrac{3}{4}BK\)

BI+IK=BK

=>\(\dfrac{3}{4}BK+IK=BK\)

=>\(IK=\dfrac{1}{4}BK=\dfrac{1}{4}\cdot\dfrac{2}{3}\cdot BE=\dfrac{1}{6}BE\)

mà BE=CD

nên \(IK=\dfrac{1}{6}CD\)

=>CD=6IK

a: \(BC=\sqrt{6^2+12^2}=6\sqrt{5}\left(cm\right)\)

=>\(IM=\dfrac{AB}{2}=3cm\)

b: Xét tứ giác ABCD có

ID//AB

IA//DB

góc IAB=90 độ

IA=AB

Do đó: ABCD là hình vuông

Xét ΔABC có 

E là trung điểm của AC

M là trung điểm của BC

Do đó: EM là đường trung bình

=>EM//AB

hay EM⊥AC

Xét tứ giác AEDB có

\(\widehat{DEA}=\widehat{DBA}=\widehat{EAB}=90^0\)

Do đó: AEDB là hình chữ nhật

mà AB=AE
nên AEDB là hình vuông

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Vì $M,E$ lần lượt là trung điểm của $BC, AC$ nên $ME$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$

$\Rightarrow ME=\frac{AB}{2}=\frac{4}{2}=2$ (cm)

Mặt khác, $ME$ là đường trung bình nên $ME\parallel AB$ hay $ED\parallel AB$

$Bx\parallel AC\Leftrightarrow BD\parallel AE$

Tứ giác $ABDE$ có 2 cặp cạnh đối $BD,AE$ và $AB, DE$ song song nhau nên $ABDE$ là hình bình hành. Mà $\widehat{A}=90^0$ (gt) nên $ABDE$ là hình chữ nhật. 

Hình chữ nhật $ABDE$ có cạnh kề $AB=AE(=4)$ nên $ABDE$ là hình vuông. (đpcm)

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Hình vẽ:

undefined