K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

Bài này dễ thôi đây này

Sabc = 1/2 ABx AC = 24 => AB xAC = 48

Tam giác ABC vuông tại A , theeo HTL:

                             AB.AC = AH.BC => BC= AB.AC: AH = 48:4,8 = 10

Tam giác ABC vuông tại A , theeo py ta go :

                              AB^2 + AC^2 = BC^2 = 10^2 = 100 

(AB + AC)^2 = AB^2 + AC^ 2 + 2AB.AC=100+2.48=196=>AB+AC=CĂN 196=14   (1)

(AB - AC)^ 2 = AB^2 + AC^2 - 2AB.AC = 100 - 2.48 = 100-96 = 4 => AB - AC = CĂN 4 = 2 (2)

Lấy (1)cộng (2)

=> AB + AC + AB - AC = 14 +2 => 2AB = 16 => AB = 8

=> 8 + AC = 14 => AC= 6   

 

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

18 tháng 12 2016

Áp dụng định lý 1 của hệ thức cạnh và đường cao trong ΔvACH

\(AC^2=CH.CB\)

\(8^2=CH.10\)

64=CH.10

CH=\(\frac{64}{10}\)

CH=6,4 cm

SΔAHC=\(\frac{1}{2}CH.AH\)=\(\frac{1}{2}.4,8.6,4=15,36cm^2\)

14 tháng 11 2023

Ta có \(\widehat{HAC}=\widehat{B}\) (cùng phụ với \(\widehat{C}\)

Mà \(\widehat{B}=\tan^{-1}\left(\dfrac{AC}{AB}\right)=\tan^{-1}\left(\dfrac{32}{24}\right)=\tan^{-1}\left(\dfrac{4}{3}\right)\approx53,13^o\)

Nên \(\widehat{HAC}\approx53,13^o\)

Ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40\) cm

\(\Rightarrow IB=IC=20cm\)

Ta có \(CH=\dfrac{AC^2}{BC}=\dfrac{32^2}{40}=25,6cm\) 

\(AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=19,2cm\)

Do vậy \(\dfrac{CI}{CH}=\dfrac{IK}{AH}\Rightarrow IK=\dfrac{CI.AH}{CH}=\dfrac{20.19,2}{25,6}=15cm\)

Mặt khác \(\dfrac{CI}{CH}=\dfrac{CK}{CA}\Rightarrow CK=\dfrac{CI.CA}{CH}=\dfrac{20.32}{25,6}=25cm\)

\(\Rightarrow C_{CIK}=CI+CK+IK\) \(=20+15+25=60cm\)

Mặt khác, \(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.24.32=384cm^2\)

Lại có \(\Delta CIK~\Delta CAB\left(g.g\right)\) \(\Rightarrow\dfrac{S_{CIK}}{S_{CAB}}=\left(\dfrac{IK}{AB}\right)^2=\left(\dfrac{15}{24}\right)^2=\dfrac{25}{64}\)

\(\Rightarrow S_{CIK}=\dfrac{25}{64}S_{CAB}=\dfrac{25}{64}.384=150cm^2\)

a: BC=10cm

BH=3,6cm