K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AB=AE
=> tam giác ABE vuông cân
=> AG đồng thời là đường phân giác
=> GB/GC=AB/AC (t/c đường phân giác)(1)
tc  ΔABC~ ΔHAC(g.g)
=> AB/AC=HA/HC (t/c...)(2)
từ 1 và 2 => GB/GC=HA/HC
GB/(GB+GC)=HA/(HA+HC)(t/c của dãy tỉ số = nhau)
GB/BC=HA/(HA+HC)
mà HA=HD
=>GB/GC=HD(HA+HC) (ĐPCM)

21 tháng 7 2019

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có

HB=HC(ΔAHB=ΔAHC)

\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)

nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)

mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)

nên \(\widehat{EHC}=\widehat{FHC}\)

mà tia HC nằm giữa hai tia HE,HF

nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)

3 tháng 2 2021

cảm ơn

18 tháng 2 2019

có tất cả bao nhiêu số lẻ bé hơn 2016 mà chia hết cho 5