Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông ở A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuong góc với BC ( H thuộc BC ) Biết HI = 2cm HC= 3cm. Tính Chu vi tam giác ABC
a, tam giac BAD co AH vua la dung cao vua la dg trung truc nen do la tam giac can
a,Xét t/g vuông AHD và t/g vuông AHB có :
AH chung
HD = HB (gt)
=> t/g AHD = t/g AHB ( ch-cgv )
=> AB = AD
=> t/g BAD cân tại A
b, Để CD là tia p/g của ACE
Thì sau 1 vài bước phân tích ta có
DCE^ + HAB^ = DCA^ + HBA^
Vì cần cm ACE^ = DCA^
Nên ta có thêm gt từ trên trời rơi xuống là : HAB^ = HBA^
=> HA = HB
Do gt đưa ra ko tm nên vô lí :)) làm bừa đấy ạ
c, Theo câu b ta có : ECD^ = ACD^
Xét t/g vuông CHK và t/g vuông CHA có :
CH chung
ECD^ = ACD^ ( cm câu a )
=> t/g CHK = t/g CHA ( cgv-gn )
Câu d thì chịu r :D
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
1. xét tam giác BAH và tam giác HAD có:
góc BHA = góc AHD = 900 (gt) ; HB = HD (gt)
AH chung
=> tam giác BAH = tam giác HAD (c.g.c)
=> AB = AD (cạnh tương ứng)
=> tam giác BAD cân tại A
2. hình như đề sai hay sao ý !!!!
bn vẽ hình được ko ngay chỗ CE vuông góc AD kéo dài là sao ko hỉu??? vẽ thử nhé
6765786879
Cho tam giác ABC vuông tại A, AC>AB. Kẻ AH vuông góc BC. Trên DC lấy điểm D sao cho HD=HB. Kẻ CE vuông góc với AD kéo dài.
AH giao CE tại K.
CMR: a/ KD//AB
b/ Tìm điều kiện của tam giác ABC để tam giác AKC đều