K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

Bạn tự vẽ hình nha

AED + DEC = 180

mà DEC = AEF (tam giác AFE = tam giác DCE)

=> AED + AEF = 180

=> EF và ED là 2 tia đối

=> D , E , F thẳng hàng

8 tháng 5 2019

Câu a,b: dễ bạn tự làm nhé

c) Ta có tam giác BAE = tam giác BDE ( cm b)

=> góc CAB = góc BDF (2 góc t/ư)

Mà góc CAB = 90*( vì tam giác ABC vuông tại A)

=> góc BDF =90*

\(\Rightarrow\hept{\begin{cases}ED\perp BC\\FD\perp BC\end{cases}}\)(ĐN)

=> D, E, F thẳng hàng ( cùng \(\perp\)BC)

14 tháng 12 2022

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do dó: ΔBAD=ΔBED

=>DA=DE
b: Sửa đề: BD vuông góc với AE

Ta có: BA=BE

DA=DE

Do đó; BD là trung trực của AE

=>BD vuông góc với AE

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
17 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

16 tháng 5 2020

Xét ΔABDΔABD và ΔEBDΔEBD, ta có:

AB=BE ( gt)

ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)

BD chung

⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh...
Đọc tiếp

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?

Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.

Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE

Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF

Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!

0
13 tháng 5 2021

a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

         BD là cạnh chung

         Góc ABD = góc EBD (đường phân giác BD)

=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

29 tháng 5 2018

A B C D O E F

a) Ta có BD = BA  \(\Rightarrow\)tam giác ABD cân tại B

Gọi giao điểm của AD với BE là O

Xét tam giác ABO và tam giác DBO có :

AB = BD

\(\widehat{ABO}=\widehat{DBO}\)( BE là phân giác góc B )

Chung cạnh BO

\(\Rightarrow\) tam giác ABO = tam giác DBO ( c-g-c )

\(\Rightarrow\widehat{AOB}=\widehat{DOB}\)

Mà  \(\widehat{AOB}+\widehat{BOD}=180^o\)( kề bù )

\(\Rightarrow AD\perp BE\)

b) Xét tam giác BAE và tam giác BDE có :

AB = BD

\(\widehat{ABE}=\widehat{DBE}\)

Chung BE

\(\Rightarrow\) tam giác BAE = tam giác BDE ( c-g-c )

\(\Rightarrow EA=ED\)

29 tháng 5 2018

c) ta có tam giác AEB = tam giác DEB ( câu b )

\(\Rightarrow\widehat{EAB}=\widehat{EDB}=90^o\)

Mà \(\widehat{EDB}+\widehat{EDC}=180^o\)

\(\Rightarrow\widehat{EDC}=\widehat{EDB}=90^o\)

Xét tam giác AFE và tam giác DCE có :

\(\widehat{EAF}=\widehat{EDC}\left(=90^o\right)\)

AF = DC

AE = ED ( câu b )

\(\Rightarrow\)tam giác AFE = tam giác DCE ( c - g - c )

\(\Rightarrow EF=EC\)

d) Ta có AB = BD

             AF = DC

\(\Rightarrow AB+AF=BD+DC\)

\(\Leftrightarrow BF=BC\)

\(\Rightarrow\)Tam giác BFC cân tại B

Mà BE là phân giác góc FBC ( là đỉnh tam giác cân FBC )

\(\Rightarrow\)BE là đường cao tam giác FBC

Lại có  \(CA\perp BF\)

CA và BE cắt nhau tại E

\(\Rightarrow\)E là trực tâm tam giác FBC

Mà  \(\widehat{EDC}=\widehat{EDB}=90^o\Rightarrow ED\perp BC\)

\(\Rightarrow\)D ; E ; F thẳng hàng