K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

=>ΔBAM=ΔBDM

=>MA=MD

c: Xet ΔMAN vuông tại Avà ΔMDC vuông tại D có

MA=MD

góc AMN=góc DMC

=>ΔMAN=ΔMDC

=>MN=MC

d: BN=BC

MN=MC

=>BM là trung trực của NC

=>B,M,I thẳng hàng

a: AC=căn 5^2-3^2=4cm

AB<AC<BC

=>góc C<góc B<góc A

b: xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

=>ΔBAM=ΔBDM

=>MA=MD

Xét ΔMAN vuông tại A và ΔMDC vuông tại D có

MA=MD

góc AMN=góc DMC

=>ΔMAN=ΔMDC

=>MN=MC

=>ΔMCN cân tại M

2 tháng 5 2022

a, b ở đâu vậy bạn

 

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BA=BD

BM chung

Do đó: ΔBAM=ΔBDM

Suy ra: MA=MD

Xét ΔAMN vuông tại A và ΔDMC vuông tại D có

MA=MD

\(\widehat{AMN}=\widehat{DMC}\)

Do đó: ΔAMN=ΔDMC

Suy ra: MN=MC

hay ΔMNC cân tại M

8 tháng 4 2022

câu c

8 tháng 5 2022

a. Xét tam giác vuông ABC 

Theo định lý Py - ta - go ta có :

AB2 + AC2 = BC2

=> 32 + AC2 = 52

=> 9 + AC2  = 25

=> AC2 = 16

=> AC = 4

Vậy AB < AC < BC

b. Xét tam giác BAM và tam giác BDM ta có :

BM chung

Góc BAM = góc BDM ( = 90 độ )

BA = BD ( gt)

=> tam giác BAM = tam giác BDM ( ch - cgv)

=> MA = MD ( hai cạnh tương ứng )

Xét tam giác AMN và tam giác DMC

góc AMN = góc DMC ( đối đỉnh )

MA = MD ( cmt)

góc MAN= góc MDC ( = 90 độ )

=> Tam giác AMN = tam giác DMC 

=> MN = MC

=> Tam giác MNC cân

8 tháng 5 2022

lm cả c nx ik 

8 tháng 4 2022

https://img.hoidap247.com/picture/answer/20200518/large_1589795846635.jpg?v=0

8 tháng 4 2022

thank haha

 

a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

=>ΔBAM=ΔBDM

=>AM=DM

b: Xét ΔMAN vuông tại A và ΔMDC vuông tại D có

MA=MD

góc AMN=góc DMC

=>ΔMAN=ΔMDC

c: ΔMNC có MN=MC

nên ΔMCN cân tại M

23 tháng 12 2023

Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

Do đó: ΔBAM=ΔBDM

=>MA=MD

Xét ΔMAN vuông tại A và ΔMDC vuông tại D có

MA=MD

\(\widehat{AMN}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔMAN=ΔMDC

=>AN=DC và MN=MC

Ta có: BA+AN=BN

BD+DC=BC

mà BA=BD và AN=DC

nên BN=BC

=>B nằm trên đường trung trực của NC(1)

ta có: MN=MC

=>M nằm trên đường trung trực của NC(2)

Ta có: IN=IC

=>I nằm trên đường trung trực của NC(3)

từ (1),(2),(3) suy ra B,M,I thẳng hàng

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAM vuôg tại A và ΔBDM vuông tại D có

BM chung

BA=BD

=>ΔBAM=ΔBDM

=>MA=MD

c: Xét ΔMAN vuông tại A và ΔMDC vuông tại D có

MA=MD

góc AMN=góc DMC

=>ΔMAN=ΔMDC

=>MN=MC