K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét ΔABC có ME//AB

nên CE/CA=CM/CB=1/2

=>E là trung điểm của AC

Xét ΔCAB có MD//AC

nên MD/AC=BD/BA=BM/BC=1/2

=>D là trung điểm của BA

=>MD//CE và MD=CE

=>MCED là hình bình hành

c: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>DE//HM

ΔHAC vuông tại H

mà HE là đường trung tuyến

nên HE=AC/2=MD

Xét tứ giác MHDE có

MH//DE

MD=HE

Do đó;MHDE là hình thang cân

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

16 tháng 12 2016

A B C M D E H K

11 tháng 2 2017

mk ko biết

9 tháng 1 2022

a) Xét tứ giác ADEM có:

D= 90 độ (DM vuông góc với AB tại D(gt))

A= 90 độ ( Tam giác ABC vuông tại A(gt))

E= 90 độ ( ME vuông góc với AC tại E(gt))

=> Tứ giác ADME là hình chữ nhật

 Tik nha 

b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó:D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

M là trung điểm của BC

D là trung điểm của AB

Do đó: MD là đường trung bình

=>MD//CE và MD=CE

hay CMDE là hình bình hành

30 tháng 11 2015

Xét tam giác KAD và HDB có:

DA=DB

^B=^ADK(đồng vị)

^DAK=^BDH(đvị)

=>∆KAD=∆HDB(g.c.g)

=>KA=DH

Mà KA//DH(gt)

=>ADHK là hbh (3)

Xét ∆HAB có:

DA=DB(cmt )=> DH là đường trung tuyến

^AHB=90(gt)

=>DH=1/2AB =>DA=DA (4)

Từ (3) và (4) =>ADHK là hình thoi

29 tháng 11 2015

a) xét tứ giác ADME có

^A=^ADM=^AEM=90 (gt)

=>ADME là hcn

b)Xét tam giác ABC có:

MB=MC(gt)

ME//AB(ADME là hcn.cmt)

=>EA=EC=>EC=1/2AC  (1)

Lại có: MD//AC (ADME là hcn.cmt)

=>DA=DB

=>DM là đường trung bình=>DM=1/2AC  (2)

Từ (1) và (2)=>DM=EC

mà DM//AE(E thuộc AC)

=>MDEC là hbh

c) Nối H với E

Xét tam giác HAC có:

EA=EC(cmt)=>HE là đường trung tuyến

^AHC=90(gt)

=>HE=1/2AC

mà DM=1/2AC(cmt)

=>HE=DM

=>MHDE là htc.

 

 

 

a: Xét tứ giác AEID có

góc AEI=góc ADI=góc DAE=90 độ

nên AEID là hình chữ nhật

b: Xét ΔBAC co DI//AC

nên DI/AC=BI/BC=BD/BA=1/2

=>D là trung điểm của AB

Xét ΔBAC có EI//AB

nên EI/AB=CI/CB=CE/CA=1/2

=>E là trung điểm của AC

=>DI//CE và DI=CE
=>DICE là hình bình hành

c: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>DE//IH

ΔHAC vuông tại H

mà HE là trung tuyến

nên HE=AC/2=DI

Xét tứ giác IHDE có

IH//DE

ID=HE

Do đó: IHDE là hình thang cân