K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath

2 tháng 8 2018

AH vuông góc BC nhé các bạn giúp mk nhá mk cần nhanh

1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=HC\cdot BC\)

3: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN∼ΔACB

4 tháng 3 2022

TK

1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB

19 tháng 3 2017

B A C H D E

19 tháng 3 2017

a) xét tam giác ACH và tam giác BCA có:

góc CHA= góc CAB=90 độ

góc C chung

\(\Rightarrow\) ∆ACH ~ ∆BCA(g.g)

b) xét tam giác CDE và tam giác CAB có:

góc CDE=góc CAB= 90 độ

\(\Rightarrow\)tam giác CDE~tam giác CAB

\(\Rightarrow\dfrac{CD}{CA}=\dfrac{DE}{AB}\Rightarrow DE\cdot CA=CD\cdot AB\)

c) ta có:

\(DE\perp CH,AH\perp CH\Rightarrow\)DE//AH

\(\Rightarrow\dfrac{DH}{CH}=\dfrac{AE}{AC}\Rightarrow DH=\dfrac{AE\cdot CH}{AC}\)(1) (hệ quả định lí Talet)

ta lại có ∆ACH ~ ∆BCA(theo câu a)

\(\Rightarrow\dfrac{AH}{BA}=\dfrac{CH}{CA}\Rightarrow AH=\dfrac{CH\cdot AB}{AC}=\dfrac{CH\cdot AE}{AC}\)(2) (AE=AB)

từ (1) và (2) suy ra AH=DH

d)chiều mình làm tiếp

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE