Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền BA
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền CA
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Ta có: \(AD\cdot AB=AE\cdot AC\)
nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB
hình tự vẽ nhé:
\(BC=BH+HC=16+81=97\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(AB^2=16.97=1552\)
\(\Rightarrow\)\(AB=\sqrt{1552}=4\sqrt{97}\)
\(AC^2=HC.BC\)
\(\Rightarrow\)\(AC^2=81.97=7857\)
\(\Rightarrow\)\(AC=\sqrt{7857}=9\sqrt{97}\)
\(AH.BC=AB.AC\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)
\(\Rightarrow\)\(AH=\frac{4\sqrt{97}.9\sqrt{97}}{97}=36\)
\(AD.AB=AH^2\)
\(AE.AC=AH^2\)
suy ra: \(AD.AB=AE.AC\)
b: \(DA\cdot DB+EA\cdot EC\)
\(=HD^2+HE^2\)
\(=AH^2=HB\cdot HC\)
\(a,\) Áp dụng HTL: \(AH=\sqrt{BH\cdot HC}=6\left(cm\right)\)
Dễ thấy ADHE là hcn nên \(AH=DE=6\left(cm\right)\)
\(b,\) Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AD=AH^2\\AE\cdot AC=AH^2\end{matrix}\right.\Rightarrow AB\cdot AD=AE\cdot AC\)
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)