K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

Đáp án A

Phương pháp:

Công thức tính thể tích khối nón: V = 1 3 S . h với S là diện tích hình tròn đáy và h là đường cao.

Cách giải:

Gọi A’ đối xứng với A qua BC. Khi quay tam giác quanh trục BC ta sẽ được hai khối nón có đáy là hình tròn tâm H bán kính R và lần lượt có chiều cao là BH và CH.

Ta có:

A C = B C 2 − A B 2 = 4 a 2 − a 2 = a 3

⇒ A H = A B . A C B C = a . a 3 2 a = a 3 2

V = 1 3 π A H 2 . B H + 1 3 π A H 2 . C H = 1 3 . π A H 2 . B C = 1 3 π a 3 2 2 .2 a = π a 3 2

28 tháng 1 2019

1 tháng 1 2017

Đáp án C

Bán kính đáy hình nón là a, chiều cao hình nón là

h = 10 a 2 - a 2 = 3 a ⇒ V = 1 3 π a 2 . 3 a = πa 3

8 tháng 1 2018

Đáp án C

22 tháng 11 2017

15 tháng 11 2018

Đáp án A

31 tháng 1 2018

Đáp án C.

Ta có A M = A B 2 − B C 2 2 = 2 a .  Khi quay tam giác quanh trục MA thì ta được hình nón có bán kính r = a ,  đường cao h = 2 a .  Thể tích khối nón là  V = 1 3 π r 2 h = 2 3 π a 3 .

15 tháng 4 2018

Chọn A

8 tháng 3 2019

Đáp án A

Khi quay tam giác ABC quanh cạnh AC ta được khối nón có chiều cao là AC, bán kính đáy là AB

3 tháng 7 2017

V = π a 3

Đáp án A