Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
A B 2 + A C 2 = B C 2 ⇔ 3 2 + 4 2 = B C 2
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA∼ΔHAC
c: Ta có: ΔHBA∼ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
mình chỉ tóm tắt thôi nha
a) ta có <Cchung; <H=<A=90
b) ap 1 dung dinh ly Py ta go voi ▲ABC vuong tai A thì BC=10 cm
ta có ▲ABC dồng dang ▲HAC ta có:
\(\frac{HC}{AC}=\frac{AC}{BC}\)
\(\Rightarrow AC^2=HC.BC\)
\(\Rightarrow HC=8^2:10=6,4cm\)
c)xl nha câu c thì mình cm sắp ra rùi bạn suy nghi tiếp nha
cm ▲ABD dong dang ▲HBI (<A=<H=90; B1=<B2)
\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow AB.BI=BD=HB\)
bây giờ thì bạn cm HB=HC(mình chỉ biết tới đây)
thì suy ra dược điều đó
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a: BC=căn 3^2+4^2=5cm
AI là phân giác
=>IB/AB=IC/AC
=>IB/3=IC/4
mà IB+IC=5
nên IB/3=IC/4=5/(IB+IC)=5/7
=>IB=15/7cm; IC=20/7cm
b: AH=3*4/5=2,4cm
BH=AB^2/BC=3^2/5=1,8cm