K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Áp dụng hệ thức lượng tìm được \(BH=\frac{36}{5};CH=\frac{64}{5}\)(cm)

Áp dụng tính chất đường phân giác tìm được \(\frac{BD}{DC}=\frac{AB}{AC}\Leftrightarrow\frac{BD}{BC}=\frac{AB}{AB+AC}\Leftrightarrow\frac{BD}{20}=\frac{12}{12+16}=\frac{12}{28}\Rightarrow BD=\frac{20\cdot12}{28}=\frac{60}{7}\)

\(\Rightarrow HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{300-252}{35}=\frac{48}{35}\)(cm)

28 tháng 9 2021

28 tháng 9 2021

undefined

13 tháng 10 2019

tính bc

tính bd,dc

tính hd,hb,hc

tự vẽ hình..

\(BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+16^2}=20cm\)( Định lý pitago cho tam giác vuông ABC)

\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2cm\)( Áp dụng hệ thức lương cho tam giác vuông ABC)

\(HC=BC-HB=20-7,2=12,8cm\)

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

1 tháng 7 2021

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

a: HB=12^2/16=9cm

BC=9+16=25cm

AB=căn 9*25=15cm

AC=căn 16*25=20cm

C ABC=15+20+25=40+20=60cm

b: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

c: BM*CN*BC

=BH^2/AB*CH^2/AC*AB*AC/AH

=BH^2*CH^2/AH

=AH^4/AH=AH^3

24 tháng 7 2018

a) Áp dụng Pi-ta-go cho \(\Delta AHB\)vuông tại H ta có : 

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow16^2+25^2=AB^2\)

\(\Leftrightarrow AB=\sqrt{881}\left(cm\right)\)

Áp dụng hệ thức về đường cao trong tam giác vuông ta có :

\(AH^2=HB\times HC\)

\(\Leftrightarrow16^2=25\times HC\)

\(\Leftrightarrow HC=10,24\left(cm\right)\)

Ta có :  \(BC=CH+BH=10,24+25=35,24\left(cm\right)\)

Áp dụng Pi-ta-go cho  \(\Delta ABC\)vuông tại A ta có :

\(AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC^2=35,24^2-\sqrt{881}^2\)

\(\Leftrightarrow AC=360,8576\left(cm\right)\)

b) Áp dụng Pi-ta-go cho  \(\Delta AHB\)vuông tại H ta có :

\(AH^2=AB^2-HB^2\)

\(\Leftrightarrow AH^2=12^2-6^2\)

\(\Leftrightarrow AH=6\sqrt{3}\left(cm\right)\)

Áp dụng hệ thức trong tam giác ta có :

\(AH^2=CH\times HB\)

\(\Leftrightarrow CH=18\left(cm\right)\)

Ta có : \(BC=CH+BH=18+6=24\left(cm\right)\)

Áp dụng Pi-ta-go cho  \(\Delta ABC\)vuông tại A ta có :

\(AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC^2=24^2-12^2\)

\(\Leftrightarrow AC=12\sqrt{3}\left(cm\right)\)

Vậy ...

25 tháng 11 2020

a)  A C H B 16 25

- Áp dụng định lí Py - ta - go cho tam giác vuông HAB ( \(\widehat{H}=90^o\))

\(AB^2=BH^2+AH^2\)

\(=25^2+16^2\)

\(=625+256=881\)

\(\Rightarrow AB=\sqrt{881}\approx29,6\left(cm\right)\)

- Áp dụng hệ thức lượng trong tam giác ABC ( \(\widehat{A}=90^o\)) , đường cao AH , ta có :

+) AH2 = HB . HC

   \(16^2=25.HC\)

  \(HC=\frac{16^2}{25}=\frac{256}{25}=10,24\left(cm\right)\)

+) BC = BH + HC = 25 + 10,24 = 35,24 ( cm )

\(+)AC^2=HC.BC=10,24.35,24\approx360,86\left(cm\right)\)

\(\Rightarrow AC=\sqrt{360,86}\approx18,9cm\)

Vậy : ..................

b)  A B H C 6 12

- Áp dụng định lí Py - ta - go cho tam giác vuông AHB ( \(\widehat{H}=90^o\)) , ta có :

AB2 = BH2 + AH2

122 = 62 + AH2

AH2 = 122 - 62

       = 144 - 366 = 108 ( cm )

\(\Rightarrow AH=\sqrt{108}\approx10,39\left(cm\right)\)

- Áp dụng hệ thức lượng cho tam giác ABC ( \(\widehat{A}=90^o\)) , đường cao AH , ta có :

\(+)AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{10,39^2}{6}=17,99\left(cm\right)\)

\(+)BC=BH+HC=6+17,99=23,99\left(cm\right)\)

\(+)AC^2=BC.HC=23,99.17,99=431,58\left(cm\right)\)

\(+)AC=\sqrt{431,58}\approx20,77\left(cm\right)\)

Vậy : ....................

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o