Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tạiH và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: Xét ΔHAC vuông tại H và ΔHDB vuông tại H có
góc HAC=góc HDB
=>ΔHAC đồng dạng vơi ΔHDB
=>HA/HD=HC/HB
=>HA*HB=HD*HC
c) Chứng minh M, H, N thẳng hàng.
Từ câu b ta có : HA. HB = HC. HD \(\rightarrow\frac{HA}{HC}=\frac{HD}{HB}\)
Xét \(\Delta AHC\)và \(\Delta DHB\)
có: \(\frac{HA}{HC}=\frac{HD}{HB}\)(cmt)
\(\widehat{AHC}=\widehat{DHB}\)(đối đỉnh hay cùng = 90 độ)
\(\Rightarrow\Delta AHC\)đồng dạng với \(\Delta DHB\)
\(\Rightarrow\frac{AC}{BD}=\frac{HC}{HB}\)
mà \(\frac{AC}{BD}=\frac{\frac{1}{3}AC}{\frac{1}{3}BD}=\frac{NC}{BM}\)
\(\Rightarrow\frac{HC}{HB}=\frac{NC}{BM}\)
Kết hợp với \(\widehat{NCH}=\widehat{MBH}\)(SLT do AC//BD theo câu b)
\(\Rightarrow\Delta NCH\)đồng dạng với \(\Delta MBH\)
\(\Rightarrow\widehat{CHN}=\widehat{BHM}\)
mà \(\widehat{CHN}+\widehat{NHB}=180\)độ
\(\Rightarrow\widehat{BHM}+\widehat{NHB}=180\)độ
\(\Rightarrow\)M, H, N thẳng hàng.
a) Xét \(\Delta AHC\)và \(\Delta DHB\)có:
\(\widehat{AHC}=\widehat{DHB}=90^0\)
\(\widehat{HAC}=\widehat{HDB}\)(đối đỉnh)
suy ra: \(\Delta AHC~\Delta DHB\) (g.g)
b) Xét \(\Delta ABC\)và \(\Delta BDA\)có:
\(\widehat{BAC}=\widehat{DBA}=90^0\)
\(\widehat{ABC}=\widehat{BDA}\) (cùng phụ vs góc DBH)
suy ra: \(\Delta ABC~\Delta BDA\)
\(\Rightarrow\)\(\frac{AB}{BD}=\frac{AC}{AB}\)
\(\Rightarrow\)\(AB^2=BD.AC\)
c) \(\Delta HAC\)vuông tại H có HN là đường trung tuyến
\(\Rightarrow\)\(HN=AN=NC\)
\(\Rightarrow\) \(\Delta NHC\)cân tại N \(\Rightarrow\) \(\widehat{NHC}=\widehat{NCH}\)
Tương tự: \(\widehat{MBH}=\widehat{MHB}\)
mà \(\widehat{MBH}=\widehat{HCN}\)(slt do BM // NC)
\(\Rightarrow\) \(\widehat{MHB}=\widehat{HCN}\)
mà \(\widehat{HCN}=\widehat{NHC}\) (cmt)
\(\Rightarrow\)\(\widehat{MHB}=\widehat{NHC}\)
\(\Rightarrow\)\(\widehat{MHB}+\widehat{BHA}+\widehat{AHN}\)
\(=\widehat{BHA}+\widehat{AHN}+\widehat{NHC}=180^0\)
Vậy M, N, H thẳng hàng
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
Do đó:ΔHBA\(\sim\)ΔABC
b: ta có: ΔHBA\(\sim\)ΔABC
nên BH/BA=BA/BC
hay \(BA^2=BH\cdot BC\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD*CB=CA*CE
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA đồng dạng với ΔABC
Suy ra: BH/BA=BA/BC
hay \(BA^2=BH\cdot BC\)
b: Xét ΔHAC vuông tại H và ΔHDB vuông tại H có
góc HAC=góc HDB
DO đo: ΔHAC dong dang voi ΔHDB
Suy ra: HA/HD=HC/HB
hay \(HA\cdot HB=HC\cdot HD\)
a) Xét ΔHBA và ΔABC có
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABH}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
⇒\(\frac{AB}{CB}=\frac{HB}{AB}\)
\(\Rightarrow AB^2=BH\cdot BC\)(đpcm)
b) Sửa đề: Chứng minh \(HA\cdot HB=HC\cdot HD\)
Xét ΔAHC và ΔDHB có
\(\widehat{AHC}=\widehat{DHB}\)(hai góc đối đỉnh)
\(\widehat{ACH}=\widehat{DBH}\)(hai góc so le trong, AC//DB)
Do đó: ΔAHC∼ΔDHB(g-g)
⇒\(\frac{HA}{HD}=\frac{HC}{HB}\)
hay \(HA\cdot HB=HC\cdot HD\)(đpcm)
c) Ta có: ΔHBA∼ΔABC(cmt)
⇒\(\widehat{HAB}=\widehat{ACB}\)(hai góc tương ứng)
hay \(\widehat{DAB}=\widehat{ACB}\)
Xét ΔDBA và ΔBAC có
\(\widehat{DBA}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{DAB}=\widehat{ACB}\)(cmt)
Do đó: ΔDBA∼ΔBAC(g-g)
⇒\(\frac{DB}{AB}=\frac{BA}{AC}\)
hay \(AB^2=AC\cdot BD\)(đpcm)
Thank you