Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
^MAC = ^MCA = a ---> ^AMH = ^MAC + ^MCA = 2a
sin2a = sinAMH = AH/MA = 2AH/BC = 2(AH/AC).(AC/BC) = 2 sina.cosa
b)
1+cos2a = 1+cosAMH = 1+MH/MA = (MA+MH)/MA = CH/MA = 2CH/BC =
= 2 (CH/AC).(AC/BC) = 2 cosa.cosa = 2 cos^2 (a)
c)
1-cos2a = 1-cosAMH = 1-MH/MA = (MA-MH)/MA = BH/MA = 2BH/BC =
= 2 (BH/AB).(AB/BC) = 2 sinBAH.sinACB = 2 sin^2 (a)
(^BAH = ^ACB = a vì chúng cùng phụ với góc ABC)
\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)
\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)
\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)
\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)
\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)
a) Mình nghĩ là cos a = cot a . sin a chứ :))
CM nà :
Ta có : cot a = \(\frac{AB}{AC}\)(1)
\(\frac{cosa}{sina}=\frac{AB}{BC}:\frac{AC}{BC}=\frac{AB}{AC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)cot a = \(\frac{cosa}{sina}\)
\(\Leftrightarrow\)cos a = cot a . sin a
b) Ta có : tan a = \(\frac{AC}{AB}\)
Lại có : cot a = \(\frac{AB}{AC}\)
\(\Rightarrow\)cos a . tan a = \(\frac{AC.AB}{AB.AC}\)= 1
Vậy ...
Góc 2α = A M H ^
a, Ta có: sin 2 α = A H A M = 2 A H A M = 2 A B . A C B C 2 = 2 sin α . cos α
b, 1 + cos2α = 1 + H M A M = H C A M = 2 H C B C = 2 . A C 2 B C 2 = 2 cos 2 α
c, 1 – cos2α = 1 - H M A M = H B A M = 2 H B B C = 2 . A B 2 B C 2 = 2 sin 2 α