Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 2:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔBDC và ΔCEB có
BD=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
DO đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=CE
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) 16x2 + * .24xy + x
b) * - 42xy + 49y2
c) 25x2 + * + 81
d) 64x2 - * +9
2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương
a) x2 + 10x + 26 + y2 + 2y
b) z2 - 6z + 5 - t2 - 4t
c) x2 - 2xy + 2y2 + 2y + 1
d) ( x + y + 4 )( x + y - 4 )
e) ( x + y - 6 )
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Kẻ OK vuông góc với BC
Tam giác OKC và ODC là 2 tam giác vuông có:
OC là cạnh chung
góc C1 = góc C2 ( CO là tia phân giác)
=> tam giác OKC = tam giác ODC ( cạnh huyền, góc nhọn)
=> OK = OD ( 2 cạnh tương ứng ) (1)
Chứng minh tương tụ ta cũng có :
tam giác OKB = tam giác OEB (cạnh huyền, góc nhọn)
=> OK = OE ( 2 cạnh tương ứng ) (2)
Từ (1) và (2) => OE = OD
=> Đpcm.
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Để chứng minh công thức AB+AC-BC = 2AE, ta sẽ sử dụng định lí phân giác trong tam giác:
- Ta có: BOC là phân giác góc B và C, do đó BO và CO cắt nhau tại O, chia góc BOC thành hai góc bằng nhau.
- Khi đó, ta có: AOE và AOD là cặp tam giác đồng dạng, vì chúng có:
- Cặp góc vuông: ∠AOE = 90^o và ∠AOD = 90^o
- Cặp góc bằng nhau: ∠OAE = ∠OAD (vì AE là phân giác góc A)
- Do đó: cặp góc còn lại cũng bằng nhau: ∠AEO = ∠ADO
- Từ đó suy ra: các tam giác AOE và AOD đồng dạng theo nguyên tắc cạnh - góc - cạnh (góc AEO hoặc ADO là góc chung, AE = AD và EO = OD): => AE/EO = AD/OD
- Đặt x = EO. Khi đó, OD = x/BC và AE = x/AB (do AE là phân giác góc A).
- Áp dụng công thức phân giác để tính x theo AB, AC và BC:
- Xét tam giác EOx:
- áp dụng định lí cosin trong tam giác vuông EOX có: OE^2 = OX^2 + EX^2 AB^2 + BE^2 = (AB-BC)^2 + x^2 AC^2 + CD^2 = (AC-BC)^2 + x^2
- suy ra: 2x^2 = AB^2 + AC^2 - BC^2
- Thay x bằng giá trị tương ứng, ta được: (AB+AC-BC)/2 = AE Vậy, ta đã chứng minh được công thức cần tìm.
x=1+x
x=1+x
x=1+x=1-2
1 + 1 = 2
2 + 2 =4
=> 2+4=6
1+1+2+2=2+4
=6
=> x=6