Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trựccủa AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=gócEDC
=>ΔDAF=ΔDEC
=>DF=DC
c: AD=DE
mà DE<DC
nên AD<DC
d: Xet ΔBFC có BA/AF=BE/EC
nên AE//CF
a:Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
c: AD=DE
DE<DC
=>AD<DC
a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:
BD:cạnh chung; góc ABD= góc EBD(gt)
Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)
=> AB=EB; AD=ED(cặp cạnh tương ứng)
Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE
=> BD là đường trung trực của AE(đpcm)
b, Xét tam giác ADF và tam giác EDC ta có:
góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)
Do đó tam giác ADF=tam giác EDC(g.c.g)
=> DF=DC(cặp cạnh tương ứng) (đpcm)
c, Xét tam giác DEC vuông tại E ta có:
DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)
mà DE=DA=> DA<DC(đpcm)
d, Vì tam giác ADF=tam giác EDC(cm câu b)
=> AF=EC(cặp cạnh tương ứng)
Ta có: BF=BA+AF; BC=BE+EC
mà BA=BE;AF=EC(đã cm)
=> BF=BC
=> tam giác BCF cân tại B
mặc khác ta có: BA=BE(cm câu a)
=> tam giác ABE cân tại B
Xét tam giác BCF và tam giác ABE cân tại B ta có:
góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)
=> góc BAE=góc BFC
=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)
10 năm sau thì cha vẫn hơn con 24 tuổi
Ta có sơ đồ 10 năm sau :
Cha : |----|----|----|
Con : |----|
Tuổi con 10 năm sau là :
24: ( 3- 1 ) = 12 ( tuổi )
Tuổi con hiện nay là :
12 - 10 = 2 tuổi
Tuổi cha hiện nay là :
2 + 24 =26 ( tuổi )
Đáp số : .......
Sau 10 năm cha vẫn hơn con 24 tuổi.
=>Tuổi con 10 năm sau là: 24:(3-1)=12(tuổi)
Tuổi con hiện nay là: 12-10=2(tuổi)
Tuổi cha hiện nay là: 2+24=26(tuổi)
Đ/s:...
Bài này dễ như ăn cháo.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc FC
a, Xét tam giác ABD và tam giác EBD có:
góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
BD=BD(chung)
góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE