Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>BA=BE và DA=DE
Xét ΔBAE có BA=BE
nên ΔBAE cân tại B
c: Ta có: DA=DE
DE<DC(ΔDEC vuông tại E nên DC là cạnh huyền)
=>DA<DC
d: BA=BE
=>B nằm trên đường trung trực của AE(1)
DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm của AE
=>BD\(\perp\)AE tại M và M là trung điểm của AE
CG=2GM nên \(GM=\dfrac{1}{2}CG\)
CG+GM=CM
=>\(\dfrac{1}{2}CG+CG=CM\)
=>\(CM=\dfrac{3}{2}CG\)
=>\(CG=\dfrac{2}{3}CM\)
Xét ΔEAC có
CM là đường trung tuyến
\(CG=\dfrac{2}{3}CM\)
Do đó: G là trọng tâm của ΔEAC
Xét ΔEAC có
G là trọng tâm
N là trung điểm của EC
Do đó: A,G,N thẳng hàng
a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:
\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)
Ủng hộmi nha
a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=10\)
Suy ra cạnh BC = 10cm
b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:
\(\widehat{BAC}=\widehat{DEB}=90^o\)
\(\widehat{B}\)chung
\(BD=BC\left(gt\right)\)
\(\Rightarrow\Delta BAC=\Delta BED\)
Vậy...