Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhá
Bài 2:
Có C=40 độ => B = 50 độ do tam giác ABC vuông tại A thì BAC=90 độ
Có AH vuông góc BC => AHB=90 độ
=> BAH=40 độ (DO AHB=90 độ; B=50 độ)
DO BAC=90 độ (Cmt)
=> HAC=90-40=50 độ
Vậy B=50 độ; HAB=40 độ; HAC=50 độ.
BẠN TỰ VẼ HÌNH NHÉ
Bài 3:
Có BDC là góc ngoài của tam giác CDE
=> góc BDC = góc CED + góc DCE
Ta lại có góc BEC cũng là góc ngoài của tam giác ABE
=> góc BEC = góc BAE + góc ABE
=> góc BEC > góc BAE
Mà góc BEC = góc DEC; góc BAE = góc BAC
=> góc DEC > góc BAC (*)
Mà góc BDC = góc CED + góc DCE
=> góc BDC > góc DCE (**)
Từ (*) và (**) => góc BDC > góc BAC.
Vậy góc BDC > góc BAC.
B1: Giải:
Vì DE song song với BC => góc DIB= góc IBC (SLT).Mà góc IBC=góc DBI (BI là (p/g của góc ABC ) => góc DBI=góc DIB theo định lý => tam DIB cân tại D=>DB=DI.
Vì DE song song với BC=>góc EIC = góc ICB (SLT). Mà góc ECI =góc ICB ( CI là p/g của của góc ECB) theo định lý => tam giác IEC cân tại E=>EI=EC.
Vì DE=DB+IE. Mà DI = DB;IE=EC=>DE=DB+CE
Vậy : DE=DB+CE
*bạn tự vẽ hình nhé
a) Xét Δ AMB và Δ DMC có :
BM = CM (gt)
AM = DM (gt)
góc M1 = M2 ( 2 góc đối đỉnh )
=> ΔAMB = ΔDMC (c-g-c)
=> góc MBA = góc MCD ( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD
Bài làm
Bài 2:
a) Xét tam giác AOI có:
Theo bất đẳng thức của tam giác có:
OA < IA + IO
=> OA < IA + BI - OB
=> OA + OB < AI + IB (đpcm )
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
d)chịu
Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB
a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC
b, Chứng minh tam giác CBD cân
c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE
d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM
Giải
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
Bài này bạn Elsa hỏi r mà nhỉ
Link đây nhé, mình giải rất chi tiết r đó: https://olm.vn/hoi-dap/detail/260619760413.html
bài làm
=> góc BDC = góc CED + góc DCE
Ta lại có góc BEC cũng là góc ngoài của tam giác ABE
=> góc BEC = góc BAE + góc ABE
=> góc BEC > góc BAE
Mà góc BEC = góc DEC; góc BAE = góc BAC
=> góc DEC > góc BAC (*)
Mà góc BDC = góc CED + góc DCE
=> góc BDC > góc DCE (**)
Từ (*) và (**) => góc BDC > góc BAC.
Vậy góc BDC > góc BAC.
*Ryeo*