Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ABC: Trực tâm H => ^BAC + ^BHC = 1800. Tương tự: ^BPC + ^BMC = 1800
Suy ra: ^BAC + ^BHC = ^BPC + ^BMC. Ta có: ^BHC = ^BMC (2 góc nội tiếp cùng chắn cung BC)
=> ^BAC = ^BPC => Tứ giác ABCP nội tiếp => P nằm trên (ABC) hay P thuộc (O) (đpcm)
b) Gọi AO cắt BC tại F'. Ta đi chứng minh F trùng F'. Thật vậy:
Gọi 2 đường cao của tam giác ABC là BT và CS. ST cắt AH tại I.
Tứ giác BSTC nội tiếp => ^ATS = ^ABC => ^ATI = ^ABF'. Dễ thấy: ^TAI = ^BAF'
Suy ra: ^AF'B = ^AIT. Mà HE // AF', ^AIT = ^HIS nên ^HEB = ^HIS => \(\Delta\)HBE ~ \(\Delta\)HSI (g.g)
=> \(\frac{BE}{SI}=\frac{HB}{HS}=\frac{BC}{ST}=\frac{AC}{AS}\). Ta cũng có: \(\Delta\)AF'C ~ \(\Delta\)AIS (g.g) => \(\frac{CF'}{SI}=\frac{AC}{AS}\)
Do đó: \(\frac{BE}{SI}=\frac{CF'}{SI}\)=> BE = CF' . Mà BE = CF nên CF = CF' => F trùng F' => A,F,O thẳng hàng (đpcm).
c) Gọi K là tâm đường tròn ngoại tiếp \(\Delta\)BHC. Dễ thấy O đối xứng với K qua BC => CO=OP=CK (1)
Ta có: Hai đường tròn (N) và (K) có 2 điểm chung là B và M => KN vuông góc BM, kết hợp OK vuông góc BC
=> ^OKN = ^MBC (2 góc có 2 cạnh tương ứng vuông góc). Tương tự thì ^ONK = ^MBA
Mà ^MBC = ^MBA (Do BM là phân giác ^ABC) nên ^OKN = ^ONK => \(\Delta\)NOK cân tại O
Suy ra O nằm trên trung trực của NK và CP (Vì OP=OC)
Mặt khác: NK vuông góc BM. BM lại vuông góc CP (M là trực tâm \(\Delta\)BCP) => NK // CP
Từ đó: Trung trực của NK và CP trùng nhau => Tứ giác PNKC là hình thang cân => CK = PN (2)
Từ (1),(2) => PN = PO (đpcm).
a) Do P là trực tâm tam giác BMC nên M là trực tâm tam giác PBC.
Từ đó ta có \(\widehat{BPC}=180^0-\widehat{BMC}\). Do H là trực tâm tam giác ABC nên \(\widehat{BAC}=180^0-\widehat{BHC}\)
Mà ta lại có \(\widehat{BHC}=\widehat{BMC}\)do tứ giác BHMC nội tiếp.
Do đó ta được \(\widehat{BPC}=180^0-\widehat{BMC}=180^0-\widehat{BHC}=\widehat{BAC}\). Suy ra bốn điểm A,B,C,P cùng thuộc một đường tròn
Vậy P nằm trên (O)
b) Dựng đường kính AK của đường tròn (O). Khi đó dễ dàng chứng minh được tứ giác BHCK là hình bình hành.
Xét \(\Delta BHE\)và \(\Delta CKF\)có BE = CF,\(\widehat{HBE}=\widehat{KCF}\), BH = CK nên \(\Delta BHE=\Delta CKF\left(c-g-c\right)\)
Từ đó ta được \(\widehat{KFC}=\widehat{HEB}\)suy ra HE song song với KF. Lại có AK song song với HE nên ba điểm A, F, K thẳng hàng.
Vậy ba điểm A, F, O thẳng hàng (đpcm)
c) Gọi I là tâm đường tròn ngoại tiếp tam giác BHC. Ta có \(\Delta BHC=\Delta CKB\) nên bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác BKB. Từ đó ta suy ra được OB = OC = IB = IC. Chú ý rằng ON là đường trung trực của AB và OI là đường trung trực của BC, IN là đường trung trực của BM nên ta suy ra được \(\widehat{ONI}=\widehat{ABM}\)và \(\widehat{OIN}=\widehat{MBC}\)
Từ đó dẫn đến \(\widehat{ABM}=\widehat{MBC}=\frac{1}{2}\widehat{ABC}\)nên \(\widehat{OIN}=\widehat{ONI}=\frac{1}{2}\widehat{ABC}\)hay tam giác OIN cân tại O, đồng thời ta có \(\widehat{NOI}=180^0-2\widehat{NIO}=180^0-\widehat{ABC}\)
Lại có \(\widehat{POB}=2\widehat{PCB}=2\left(90^0-\widehat{MBC}\right)=180^0-2\widehat{MBC}=180^0-\widehat{ABC}\)
Từ đó ta được \(\widehat{NOI}=\widehat{POB}\)nên suy ra \(\widehat{NOP}=\widehat{IOB}\)
Hai tam giác OBI và OPN có \(OI=ON,\widehat{NOP}=\widehat{IOB},OB=ON\)nên \(\Delta OBI=\Delta POB\)
Mà tam giác OBO cân tại B nên tam giác OPN cân tại P. Từ đó suy ra PN = PO
Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.
Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)
Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)
Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)
Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'
=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp
Áp dụng phương tích đường tròn có: FK.FC=FD.FL' (1)
Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF
=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g) => FA2 = FK.FC (2)
Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)
=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2
Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp
Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L
Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2
Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).
Em không vẽ được hình, xin thông cảm
a, Ta có góc EAN= cungEN=cung EC+ cung EN
Mà cung EC= cung EB(E là điểm chính giữa cung BC)
=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)
=> tam giác AEN đồng dạng tam giác FED
Vậy tam giác AEN đồng dạng tam giác FED
b,Ta có EC=EB=EM
Tam giác EMC cân tại E => EMC=ECM
MÀ EMC+AME=180, ECM+ABE=180
=> AME = ABE
=> tam giác ABE= tam giác AME
=> AB=AM => tam giác ABM cân tại A
Mà AE là phân giác => AE vuông góc BM
CMTT => AC vuông góc EN
MÀ AC giao BM tại M
=> M là trực tâm tam giác AEN
Vậy M là trực tâm tam giác AEN
c, Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH
Vì M là trực tâm của tam giác AEN
=> \(EN\perp AN\)
Mà \(OI\perp AN\)(vì I là trung điểm của AC)
=> \(EN//OI\)
MÀ O là trung điểm của EH
=> I là trung điểm của MH (đường trung bình trong tam giác )
=> tứ giác AMNH là hình bình hành
=> AH=MN
Mà MN=NC
=> AH=NC
=> cung AH= cung NC
=> cung AH + cung KC= cung KN
Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )
NBK là góc nội tiếp chắn cung KN
=> gócKMC=gócKBN
Hay gócKMC=gócKBM
=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)
Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
a) (Ta sẽ dùng phương pháp chồng hình, còn gọi là chứng minh bằng trùng hình.)
Vẽ tia \(AD'\) thỏa mãn \(\widehat{BAD'}=\widehat{MAC}\) và \(D'\) nằm trên \(\left(O\right)\).
Khi đó, \(\widehat{D'BC}=\widehat{D'AC}=\widehat{BAM}\) và ta suy ra \(D'B\) tiếp xúc với đường tròn ngoại tiếp \(ABM\).
Tương tự, \(D'C\) tiếp xúc với đường tròn ngoại tiếp \(ACM\) và ta suy ra \(D=D'\).
Vậy \(ABDC\) nội tiếp.
b) Hiển nhiên do \(\widehat{BAD}=\widehat{KAC}\).
c) (Vẫn chồng hình) Gọi \(E'\) đối xứng với \(K\) qua \(M\) suy ra \(E'BKC\) là hình bình hành.
Từ đó có \(E'B=KC=DB\) hay tam giác \(E'BD\) cân tại \(B\).
Mặt khác CM được \(BC\) là phân giác \(\widehat{E'BD}\) nên ta được \(E'\) đối xứng với \(D\) qua \(BC\).
Vậy \(E=E'\) hay \(A,E,M\) thẳng hàng.
-----
(P/S: Nếu để ý sẽ thấy tia \(AD'\) và \(AM\) thỏa tc góc ở trên sẽ đối xứng nhau qua đường phân giác \(\widehat{BAC}\). Vì thế tia \(AD'\) gọi là đường "đối trung" của tam giác \(ABC\) (ĐỐI XỨNG của TRUNG TUYẾN qua phân giác). Đường này mà cho lớp 9 toán thường thì hơi khó đó.)
Do ABKC là tứ giác nội tiếp nên \(\widehat{BAK}=\widehat{BCK}\) (Hai góc nội tiếp cùng chắn cung BK)
Do ICEK là tứ giác nội tiếp nên \(\widehat{ICK}=\widehat{IEK}\) (Hai góc nội tiếp cùng chắn cung IK)
\(\Rightarrow\widehat{DAK}=\widehat{DEK}\)
Vậy DAEK là tứ giác nội tiếp hay đường tròn ngoại tiếp tam giác ADE đi qua K.