Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -Xét △ABC có: AM, BN, CP lần lượt là ba đường phân giác (gt).
\(\Rightarrow\dfrac{MB}{MC}=\dfrac{AB}{AC};\dfrac{NC}{NA}=\dfrac{BC}{AB};\dfrac{PA}{PB}=\dfrac{AC}{BC}\) (định lí đường phân giác trong tam giác).
\(\Rightarrow\dfrac{MB}{MC}.\dfrac{NC}{NA}.\dfrac{PA}{PB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)
b) Ta có:\(\dfrac{MB}{MC}=\dfrac{AB}{AC}\) (cmt)
\(\Rightarrow\dfrac{MB}{AB}=\dfrac{MC}{AC}=\dfrac{MB+MC}{AB+AC}=\dfrac{BC}{AB+AC}\)
\(\Rightarrow MC=\dfrac{BC.AC}{AB+AC}\)
-Tương tự: \(NC=\dfrac{BC.AC}{AB+BC}\) ; \(BP=\dfrac{BC.AB}{AC+BC}\)
-Xét △AMC có: CI là đường phân giác (gt)
\(\Rightarrow\dfrac{AI}{MI}=\dfrac{AC}{MC}\) (định lí đường phân giác trong tam giác)
\(\Rightarrow\dfrac{AI}{MI}+1=\dfrac{AC}{MC}+1\)
\(\Rightarrow\dfrac{MA}{MI}=\dfrac{AC}{\dfrac{AC.BC}{AB+AC}}+1\)
\(\Rightarrow\dfrac{MA}{MI}=\dfrac{1}{\dfrac{BC}{AB+AC}}+1\)
\(\Rightarrow\dfrac{MA}{MI}=\dfrac{AB+AC}{BC}+1=\dfrac{AB+AC+BC}{BC}\)
\(\Rightarrow\dfrac{MI}{MA}=\dfrac{BC}{AB+AC+BC}\)
-Tương tự: \(\dfrac{NI}{NB}=\dfrac{AC}{AB+AC+BC};\dfrac{PI}{PC}=\dfrac{AB}{AB+AC+BC}\)
\(\Rightarrow\dfrac{MI}{MA}+\dfrac{NI}{NB}+\dfrac{PI}{PC}=\dfrac{AB+AC+BC}{AB+AC+BC}=1\)
Trả lời :
Bạn tham khảo bài làm của mình ở dưới đây nha !
Xin lỗi bạn vì không viết hẳn ra được vì 1 trước lúc đó mình đang hok thì bị sập máy do hết pin nên làm lại ra giấy cho nhanh ,bạn tham khảo nha !
a) Xét ΔABC có
AM là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
Xét ΔABC có
BN là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)
Xét ΔABC có
CP là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)
Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)
\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)
a) Ta có ^APB = ^BAC/2 + ^ABC/2 + ^ACB = 900 + ^ACB/2 = ^AMP; ^BAP = MAP
Suy ra \(\Delta\)AMP ~ \(\Delta\)APB (g.g) => \(\frac{AM}{PM}=\frac{AP}{BP}\). Tương tự \(\frac{PN}{BN}=\frac{AP}{BP}\)
Từ đó \(\frac{AM}{BN}.\frac{PN}{PM}=\left(\frac{AP}{BP}\right)^2\). Dễ thấy PM = PN, vậy \(\frac{AM}{BN}=\left(\frac{AP}{BP}\right)^2\)
b) Theo hệ thức lượng và tam giác đồng dạng, ta có biến đổi sau:
\(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CP^2}{BC.AC}\)
\(=\frac{AM}{AP}.\frac{AP}{AC}+\frac{BN}{BP}.\frac{BP}{BC}+\frac{CP^2}{BC.AC}\)
\(=\frac{AP^2}{AB.AC}+\frac{BP^2}{BA.BC}+\frac{CP^2}{CA.CB}\)
\(=\frac{AP^2.BC+BP^2.CA+CP^2.AB}{BC.CA.AB}\)
\(=\frac{AP^2.\sin A+BP^2.\sin B+CA^2.\sin C}{2S}\)(S là diện tích tam giác ABC)
\(=\frac{AP^2.\sin\frac{A}{2}.\cos\frac{A}{2}+BP^2.\sin\frac{B}{2}.\cos\frac{B}{2}+CP^2.\sin\frac{C}{2}.\cos\frac{C}{2}}{S}\)
\(=\frac{FA.FP+DB.DP+EC.EP}{S}=\frac{dt\left[AFPE\right]+dt\left[BDPF\right]+dt\left[CEPD\right]}{S}=1.\)
Ta có \(\frac{MA}{MI}=\frac{AI+IM}{MI}=\frac{AI}{MI}+1\)
Trong tam giác \(ACM\) do CI là phân giác, theo t/c phân giác: \(\frac{AI}{MI}=\frac{AC}{MC}\)
Trong \(\Delta ABM\) có BI là phân giác: \(\frac{AI}{MI}=\frac{AB}{MB}\)
\(\Rightarrow\frac{AI}{MI}=\frac{AC}{MC}+\frac{AB}{MB}=\frac{AC+AB}{MB+MC}=\frac{AB+AC}{BC}\)
\(\Rightarrow\frac{MA}{MI}=\frac{AI}{MI}+1=\frac{AB+AC}{BC}+1=\frac{AB+AC+BC}{BC}\)
\(\Rightarrow\frac{MI}{MA}=\frac{BC}{AB+AC+BC}\)
Chứng minh tương tự ta có: \(\left\{{}\begin{matrix}\frac{NI}{NB}=\frac{AC}{AB+AC+BC}\\\frac{PI}{PC}=\frac{AB}{AB+AC+BC}\end{matrix}\right.\)
\(\Rightarrow\frac{MI}{MA}+\frac{NI}{NB}+\frac{PI}{PC}=\frac{AB+AC+BC}{AB+AC+BC}=1\) (đpcm)