Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BPNC có
G là trung điểm của BN
G là trung điểm của PC
Do đó: BPNC là hình bình hành
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Nối A vs N
a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF
=> AN//CE và AN =1/2. CE
=> AN=1/2.BC(vì BC = CE) => AN =BM(vì BM = 1/2. BC)
xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng) => tg ANMB là hbh=> MN//AB và AB=MN (1) ;
xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) => IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD
Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD) (2)
Từ (1),(2)=> IK=MN
Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD
Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD)
=> tg MNIK là hbh (đpcm)
b) Do tg MNIK là hbh ( câu a) mà G là gđ của IM và KN nên G là t/đ của IM là KN
=> IG=MG và KG=NG
Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM
K là t/đ của DG(gt) => Dk=KG => DK=KG=GN
xét tg ABC có: AM là đg trung tuyến (gt) và AI=IG=GM (cmt) => G là trọng tâm của tg ABC (*)
xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF (**)
Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF
=> Tg ABC và tg DEF có cùng trọng tâm là G (đpcm)
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
c: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ADCB là hình bình hành
a)
Xét tứ giác MNPQ có
G là trung điểm của đường chéo MP(gt)
G là trung điểm của đường chéo NQ(gt)
Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b)
Xét ΔABC có
BM là đường trung tuyến ứng với cạnh AC(gt)
CN là đường trung tuyến ứng với cạnh AB(gt)
BM cắt CN tại G(gt)
Do đó: G là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)
Suy ra: \(MG=\dfrac{1}{3}MB;BG=\dfrac{2}{3}MB;NG=\dfrac{1}{3}NC;CG=\dfrac{2}{3}NC\)(1)
Ta có: G là trung điểm của MP(gt)
nên MG=GP
mà \(MG=\dfrac{1}{3}MB\)
nên \(MG=GP=\dfrac{1}{3}MB\)
Ta có: MG+GP=MP(G nằm giữa M và P)
nên \(MP=\dfrac{1}{3}MB+\dfrac{1}{3}MB=\dfrac{2}{3}MB\)(1)
Ta có: G là trung điểm của NQ(gt)
nên \(GN=GQ=\dfrac{1}{3}NC\)
Ta có: NG+GQ=NQ(G là trung điểm của NQ)
nên \(NQ=\dfrac{1}{3}NC+\dfrac{1}{3}NC=\dfrac{2}{3}NC\)(2)
Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔBAC cân tại A)
nên AN=NB=AM=MC
Xét ΔAMB và ΔANC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
AM=AN(cmt)
Do đó: ΔAMB=ΔANC(c-g-c)
Suy ra: BM=CN(hai cạnh tương ứng)(3)
Từ (1), (2) và (3) suy ra NQ=MP
Hình bình hành MNPQ có NQ=MP(cmt)
nên MNPQ là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a, Vì M là trung điểm AC và BE nên ABCE là hbh
b, Vì ABCE là hbh nên AE//BC;AE=BC(1)
Vì N là trung điểm AB và CF nên ACBF là hbh
Do đó AF//BC;AF=BC(2)
Từ (1)(2) ta được AE trùng AF và AE=AF
Vậy E đx F qua A
a) B', B và C', C đối xứng nhau qua G nên G là trung điểm của BB' và CC" => BC'B'C là hình bình hành.
b) Cm tương tương tự ta được AB'A'B, C'ACA' là hình bình hành
=> B'C' =BC
C'A'=AC
B'A'=AB
Vậy tam giác A'B'C' = tam giác ABC (c.c.c)