K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Chứng minh ΔABC=ΔAFE

Xét ΔABC và ΔAFE có

AB=AF(gt)

\(\widehat{BAC}=\widehat{FAE}\)(hai góc đối đỉnh)

AC=AE(gt)

Do đó: ΔABC=ΔAFE(c-g-c)

b) Chứng minh ΔABM=ΔAFN

Ta có: ΔABC=ΔAFE(cmt)

\(\widehat{B}=\widehat{F}\)(hai góc tương ứng)

Ta có: ΔABC=ΔAFE(cmt)

⇒BC=FE(hai cạnh tương ứng)

\(BM=CM=\frac{BC}{2}\)(M là trung điểm của BC)

\(FN=EN=\frac{FE}{2}\)(N là trung điểm của FE)

nên BM=CM=FN=EN

Xét ΔABM và ΔAFN có

BM=FN(cmt)

\(\widehat{B}=\widehat{F}\)(cmt)

AB=AF(gt)

Do đó: ΔABM=ΔAFN(c-g-c)

20 tháng 3 2020
https://i.imgur.com/zZxqSjh.jpg
6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng