K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

a) Xét 2 \(\Delta\) \(MDB\)\(MEF\) có:

\(MD=ME\) (vì M là trung điểm của \(DE\))

\(\widehat{DMB}=\widehat{EMF}\) (vì 2 góc đối đỉnh)

\(MB=MF\left(gt\right)\)

=> \(\Delta MDB=\Delta MEF\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta MDB=\Delta MEF.\)

=> \(BD=FE\) (2 cạnh tương ứng).

\(BD=CE\left(gt\right)\)

=> \(FE=CE.\)

=> \(\Delta CEF\) cân tại \(E.\)

Chúc bạn học tốt!

A B C D E M F K

Bài làm

a) Xét tam giác MDB và tam giác MEF có:

DM = ME ( M là trung điểm DE )

\(\widehat{DMB}=\widehat{EMC}\) ( hai góc đối )

BM = MF ( gt )

=> Tam giác MDB = tam giác MEF ( c.g.c )

b) Vì tam giác MDB = tam giác MEF ( cmt )

=> EF = BD ( hai cạnh tương ứng )

Mà BD = EC ( gt )

=> EF = EC

=> Tam giác CEF cân tại E ( đpcm )

c) 

2 tháng 2 2018

a) Xét tam giác MBD và tam giác MFE có:

MB = MF (gt)

MD = ME (gt)

\(\widehat{DMB}=\widehat{EMF}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta MBD=\Delta MFE\left(c-g-c\right)\)

b) Do \(\Delta MBD=\Delta MFE\Rightarrow BD=FE\)

Mà BD = EC nên EF = EC.

Vậy tam giác CEF cân tại E.

c) Do \(\Delta MBD=\Delta MFE\Rightarrow\widehat{BDM}=\widehat{FEM}\)

Mà chúng lại ở vị trí so le trong nên AB // FE.

Suy ra \(\widehat{BAC}=\widehat{AEF}\)

Lại có \(\widehat{BAC}=2\widehat{KAE}\)  (Tính chất phân giác)

\(\widehat{AEF}=2\widehat{FCE}\)  (Góc ngoài tại đỉnh cân)

\(\Rightarrow\widehat{KAE}=\widehat{ECF}\)

Chúng lại ở vị trí so le trong nên AK // CF.

2 tháng 2 2018

A A B B C C D D E E M M F F K K

Hình vẽ

13 tháng 1 2022

vào đây tham khảo nhé

https://olm.vn/hoi-dap/detail/98773432332.html

a: Xét ΔMDB và ΔMEF có

MD=ME

\(\widehat{DMB}=\widehat{EMF}\)

MB=MF

Do đó: ΔMDB=ΔMEF

b: Ta có: ΔMDB=ΔMEF

nên EF=DB=EC

hay ΔECF cân tại E

làm biếng làm quá oa oa buồn ngủ ^ 0 ^ !!

7658658

18 tháng 4 2016

bạn trả lời cái j z

2 tháng 2 2018

Câu 1: Em tham khảo tại đây nhé.

Câu hỏi của trần thị minh hải - Toán lớp 7 - Học toán với OnlineMath

31 tháng 1 2018

A B C D E F M

a) Xét \(\Delta MDB,\Delta MEF\) có :

\(DM=DE\) (M là trung điểm của DE)

\(\widehat{DMB}=\widehat{EMF}\) (đối đỉnh)

\(BM=MF\left(gt\right)\)

=> \(\Delta MDB=\Delta MEF\left(c.g.c\right)\)

b) Từ \(\Delta MDB=\Delta MEF\left(cmt\right)\)

Suy ra : \(BD=EF\) (2 cạnh tương ứng) (1)

Lại có : \(BD=CE\left(gt\right)\) (2)

Từ (1) và (2) => \(EF=EC\left(=BD\right)\)

Xét \(\Delta CEF\) có :

\(EF=EC\left(cmt\right)\)

=> \(\Delta CEF\) cân tại E