K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2016

EM MỚI HỌC LỚP 6 THÔI .

24 tháng 1 2019

20 tháng 7 2018

A B C M N P E F H K

Gọi PH và NF là 2 đường cao của \(\Delta\)BNP; CK và AE lần lượt là đường cao của \(\Delta\)CMP và \(\Delta\)AMN

Xét tứ giác BNMP có: BN // MP; MN // BP => Tứ giác BNMP là hình bình hành

=> MP = BN; MN = BP

Ta có: \(S_{CMP}=\frac{CK.MP}{2};S_{BNP}=\frac{PH.BN}{2}\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CK}{PH}\)(Do MP = BN) (1)

MP // BN => ^MPC = ^NBC (Đồng vị) Hay ^KPC = ^HBP.

Xét \(\Delta\)CKP và \(\Delta\)PHB có: ^CKP = ^PHB (=900); ^KPC = ^HBP

=> \(\Delta\)CKP ~ \(\Delta\)PHB (g.g)\(\Rightarrow\frac{CK}{PH}=\frac{CP}{PB}\) (2)

Từ (1) và (2) => \(\frac{S_{CMP}}{S_{BNP}}=\frac{CP}{PB}\). Mà \(\frac{CP}{PB}=\frac{CM}{MA}\)(ĐL Thales) \(\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CM}{MA}\)(*)

Tương tự: \(\frac{S_{BNP}}{S_{AMN}}=\frac{NF}{AE}\)\(\Delta\)AEN ~ \(\Delta\)NFB (g.g) => \(\frac{NF}{AE}=\frac{BN}{NA}\)

\(\Rightarrow\frac{S_{BNP}}{S_{AMN}}=\frac{BN}{NA}=\frac{CM}{MA}\)(ĐL Thales) (**)

Từ (*) và (**) suy ra \(\frac{S_{CMP}}{S_{BNP}}=\frac{S_{BNP}}{S_{AMN}}\Rightarrow\left(S_{BNP}\right)^2=S_{AMN}.S_{CMP}\) (đpcm).

12 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath